复合材料的历史可以追溯到古代文明,人们首先将不同的材料组合在一起以创造强大耐用的产品。在公元前1500年,埃及人使用泥土和稻草的混合物来建造结构,而蒙古人则在公元1200年开发了第一个复合弓。现代复合材料始于1900年代初期塑料的发展,该塑料的表现优于源自动植物的天然树脂。但是,仅塑料不足以为某些应用提供必要的强度。在1935年,欧文斯·康宁(Owens Corning)引入了玻璃纤维,该玻璃纤维彻底改变了纤维增强聚合物(FRP)行业。在复合材料中使用玻璃纤维导致了重大进步,包括开发可用于遮盖电子雷达设备的透明材料。在第二次世界大战期间,对轻质和强大材料的需求导致了复合材料行业的快速增长。第一个复合商用船船体于1946年推出,诸如Pultrusion之类的创新使得能够生产出可靠的强玻璃纤维增强产品。今天,复合材料被广泛用于各种行业,包括建筑,运动器材和防弹衣。凯夫拉尔和碳纤维等芳香纤维的开发进一步推进了行业。风力涡轮机叶片已成为增长的重点,随着材料的不断改进以提高效率和降低成本。由可再生能源技术的进步驱动,复合材料行业继续发展。复合材料的演变跨越了数千年,埃及人和美索不达米亚人等古老的文明利用泥土和稻草的混合物来建造强大的建筑物。稻草在生产陶器和船只中仍然是至关重要的组成部分,而后来蒙古人使用木材,骨头和动物胶发明了第一个复合弓。现代复合材料始于20世纪初期塑料的发展,该塑料的表现优于源自动植物的天然树脂。但是,仅单个塑料不足以用于某些结构应用,从而导致欧文斯·康宁(Owens Corning)在1935年引入玻璃纤维。这标志着纤维增强聚合物(FRP)行业的开始,此后一直由战时需求驱动,包括开发用于军用飞机和雷达屏蔽的复合材料。第二次世界大战的结束导致了对复合材料的需求激增,像勃兰特·戈德沃斯(Brandt Goldsworthy)这样的创新者介绍了新的制造工艺和产品,包括玻璃纤维冲浪板和纯种技术。今天,复合材料继续在包括航空航天,汽车和运动器材在内的各个行业中发挥着至关重要的作用,并具有材料科学和技术方面的进步,从而创造了更轻,更强和更广泛的结构。复合材料近来变得越来越突出,在各种应用中逐渐取代钢组件。复合材料行业仍在不断发展,越来越关注可再生能源。风力涡轮机叶片,尤其是推动尺寸限制,需要高级复合材料。研究继续探索纳米材料和基于生物的聚合物等新领域。这些混合材料结合了两种或多种不同的材料,其特征是它们的基质和增强纤维。复合材料的概念可以追溯到古代文明,例如埃及人和美索不达米亚人,他们使用泥土和稻草来建立更强的结构。后来,蒙古人使用木材,骨头和动物胶的组合发明了第一个复合弓。现代时代始于1900年代初期塑料的发展。新的合成材料改善了自然树脂性能,而康宁玻璃的意外发现玻璃纤维导致1936年的“玻璃纤维”注册。在第二次世界大战期间,聚酯树脂从德国被盗,可以生产玻璃纤维复合材料。玻璃纤维与聚酯纤维相结合,可产生令人难以置信的坚固而轻巧的结构。研究揭示了其他好处,包括射频信号的透明度。第二次世界大战后,战争行业以外的市场出现了,例如海洋市场,它在1946年看到了第一批商业复合船船体,以及汽车市场,随着1953年的雪佛兰Corvette的推出。
ln追求这些目标,在介绍章节之后,进行流变学测量的标准技术将在第2章中列出。,每一章都以对所检查主题的实际和理论重要性的解释开始。接下来是典型数据的呈现,弓可以以图形形式和经验方程式表示。每一章的主体都考虑使用任何专业工具,使用最相关的流变技术时的数据减少以及各种材料的影响。几何和对感兴趣属性的处理变量,并为观察结果提供了物理解释。有讨论。具有最低数学的最低数学,可用的理论模型及其既预测观察到的行为又定量代表数据的能力。每一章还详细阐述了正在进行的工作和未来的研究需求。最后。列出了技术文献的完整引用。这本书以简短的章节结束了关于熔体裂缝的谜,这是一种令人讨厌的流变学起源。限制了聚合物加工操作期间的生产率。
我们的目标是创建一个成功的NLP深度学习模型,以预测临床注意事项(即糖尿病和高血压)与肥胖相关的疾病。这对于从生物医学的角度从自动化机器学习领域很重要,并且可以改善健康成果的同时降低医疗保健成本(Waring等人,2020);因为如果我们只能从临床笔记中预测常见的健康状况,则可以减少人工的数量。对于我们的临床注释数据集,我们使用MIMIC-IV,因为它是一个大型且免费的数据库,其中包括最近与识别健康相关的数据。我们比较和分析多个模型的性能以及预测糖尿病和高血压的优化。这些模型的变体包括弓,伯特,生物递送室(经过ICU放电摘要训练)和生物递减的逻辑上的重新介绍,并带有班级权重以应对班级的不平衡。我们的基线,数据预处理和图形生成代码是从头开始编写的,而其他型号进行了修改并调整了预审计模型的版本。
封面:第 58 特种作战联队的徽章于 1942 年 8 月 10 日首次获准由第 58 战斗机大队使用。联队于 1952 年 11 月 18 日获准使用此徽章作为其官方徽章。徽章:天蓝色,从云层中升起,上方是希腊神话女神阿尔忒弥斯的形象,右手握弓,左手伸向箭筒中的箭,骑在由两只鹿拉着的战车上,全是金棕色,饰有 Tenné(金橙色),所有这些都在第二只鹿的缩小边框内。盾牌下方附有白色卷轴,边缘有狭窄的黄色边框,上面用蓝色字母刻有“第 58 特种作战联队”。意义:群青和空军黄是空军的颜色。蓝色代表天空,是空军作战的主要战场。黄色代表太阳和空军人员所需的卓越素质。女神阿尔忒弥斯或戴安娜是朱庇特的女儿,是奥林匹亚狩猎女神。她总是能从冒险中成功归来。
孟加拉国的渔业归因于该国水体的性质。就鱼类栖息地的性质而言,孟加拉国渔业可以大致分为内陆水,河口或沿海水和海水区。内陆水生栖息地主要由淡水河流,雨季及其领土运河(Khal)(Khal)造成的大量洪泛区(Khal)主导。死河还在该国西南地区创建了牛弓湖(Baor)。孟加拉国东北部也有深层抑郁症,称为Haor。一个名为Kaptai Lake的大型人造湖也是由吉大港山区的水电大坝形成的。内陆水体有1,288,222人的人造池塘和水库,总面积为305,025套。孟加拉国在其南部边界上受孟加拉湾的边界。该国的海岸线长约710公里,海上独家经济区(EEZ)的面积估计为70,000平方英尺。km。在2009年至2010财政年度,该国总共生产了289万吨鱼。中有17.85%是从海中生产的,而内陆培养部门的鱼类为46.62%,内陆捕获渔业部门的鱼类为35.53%。
摘要:众所周知,多形性胶质母细胞瘤 (GBM) 的精确定位可以预测肿瘤在周围神经结构中扩散的方向。本综述的目的是通过评估 GBM 经常发生的解剖区域以及在不同大脑区域观察到的主要分子改变来揭示 GBM 的侧化。根据文献,GBM 的精确或最常见的侧化尚未确定。然而,可以说 GBM 在额叶中更常见。与 GBM 有关的束和束似乎集中在皮质脊髓束、上纵束 I、II 和 III 束、弓状束长段、额海峡束和下额枕束。考虑到胶质母细胞瘤的解剖特征及其对大脑的累及,主要累及的大脑区域分别是额叶、颞叶、顶叶和枕叶,这是合乎逻辑的。尽管右半球的肿瘤体积较大,但已确定左半球被诊断为癌症的患者的预后更差,这可能反映了一些有害改变的解剖分布,例如 TP53 突变、PTEN 缺失、EGFR 扩增和
f i g u r e 1正常心脏的头三个月超声。4CHV:心脏略微向左,顶点向左指向左侧的角度为45°( + / - 15°),占据了胸腔的三分之一,胸腔的对称大小和心室,介入的隔膜,插入室内的插入,插入AV阀(心脏的关键的心脏关键)(心脏的关键)(a)(a);流经AV阀和平行的对称心室填充,没有三尖瓣反流(D); LVOT(主动脉)指向右侧的右侧灰度和颜色多普勒(B和E); 3VTV:管道弓,主动脉弓和上腔静脉(C)和静脉上的V形构型,指向左侧的气管(F)。3VTV,三艘气管视图; 4CHV,四个室景观; AV,心室室里; LVOT,左心室流出道。 [可以在wileyonlinelibrary.com上查看颜色图]3VTV,三艘气管视图; 4CHV,四个室景观; AV,心室室里; LVOT,左心室流出道。[可以在wileyonlinelibrary.com上查看颜色图]
13.摘要(最多 200 个字)本报告描述了 AEDC 连续流高超声速风洞中用于静态稳定性、压力、传热、材料/结构、边界层过渡和电磁波测试的程序。由于定义高超声速飞行器的热环境非常重要,因此特别强调传热技术。概述了高超声速飞行器部件开发中使用的材料/结构测试方法。不幸的是,预测过渡的方法已经困扰了空气动力学家三十多年,并且仍有许多未解问题。本报告简要介绍了影响过渡的许多参数,并为有兴趣专门研究此主题的人提供了大量参考资料。讨论了使用三重球的方法,并提供了说明性数据。电磁波测试是一种相对较新的测试技术,它涉及多个学科的结合:气动热力学、电磁学、材料/结构和高级诊断。这项新技术的本质是处理电磁波(RF 或 IR)在通过以高超音速飞行的导弹的弓激波、流场和电磁(EM)窗口时的传输和可能的失真。14.主题术语 电磁波、导弹导引头系统、高超音速飞行器、边界层、瞄准线误差、机鼻雷达罩
成像技术的最新进展,用于产生大量高分辨率3D图像,尤其是Brainbow等多型标记技术,允许在密集的大脑中对邻近神经元的不良分化。这首先可以从光学显微镜图像中研究许多神经元之间的连通性。但是,缺乏可靠的自动化神经形态重建,使数据分析成为提取神经科学中丰富信息学的瓶颈。已经提出了基于超级氧基的神经元分割方法来解决此问题,但是,在最终分割中出现的大量错误阻碍了先前的方法。在本文中,我们提出了一种新型的无监督方法来追踪来自多光谱脑弓图像的神经元,该方法防止了分割误差并使用两种创新来追踪连续性误差:首先,我们采取了基于高斯混合模型的聚类策略,以改善为下一步骨骼提供准确的分离色的色彩通道。然后,提出了一种骨架图方法,以允许神经元树拓扑中的不连续性识别和区域。我们发现,这些创新可以比当前的最新方法更好地表现,从而导致更准确的神经元追踪结果接近人类专家注释。
AIDS是一种免疫缺陷综合征(AIDS),是一种感染性疾病,严重危害了人类免疫缺陷病毒(HIV)引起的人类健康,HIV感染会导致人类免疫功能缺乏,易于结合一系列临床综合症,例如机会性感染和肿瘤[1]。根据北京迪坦医院的研究,中国艾滋病患者中最常见的机会感染是结核分枝杆菌(32.5%),其次是念珠菌病(29.3%),肺孢子肺炎(22.4%),大细胞病毒感染(21.7%),其他Fungal Mycections(21.7%)(Myce)(16)(Myce)(Mycc)(16)。结核病复合物(MAC)(11.3%),加密赛(8%),多焦点白细胞术(PML)(4.4%)(4.4%),脑弓(3.5%)和Marnicei(1.4%)[2] [2] [2]尽管大多数病例最初是根据临床症状,实验室测试和成像特征进行治疗的,但诊断很困难,并且某些病例可能会延迟。目前关于各种机会感染的艾滋病患者的报告很少见,艾滋病与据报道如下所示的青霉病例和巨细胞病毒感染,这是希望引起临床医生注意的,因为这样的患者采用多种方法采用多种方法来帮助患者的早期机会感染发现和治疗。