受调节的细胞死亡是一种基本的生物学过程,在维持组织稳态和消除受损或不必要的细胞方面起着至关重要的作用。铁死亡是一种铁依赖性过程,特征是氧化和受损脂质的积累,从而导致程序性细胞死亡。在调节这一过程的铁死亡途径基因中,可以考虑GPX4、TFRC、ACSL4、FSP1、SLC7A11 和 PROM2。有许多众所周知的铁死亡途径调节剂,本综述将对此进行讨论。不同组织来源的细胞对这些调节剂表现出敏感或抗性表型。在某些情况下,细胞治疗过程中会发生意外变化,表明可能存在调节死亡途径。我们假设细胞(尤其是结直肠癌细胞系)从铁敏感性转变为铁抗性可能是诱导化学抗性的结果。利用 CRISPR/Cas-9 基因组编辑等新技术,可以实现诱导表型“转换”。
摘要染色质动力学由重塑酶介导,在基因调控中起着至关重要的作用,正如在典型模型酿酒酵母 PHO5 启动子中建立的那样。然而,有效的核小体动力学,即启动子核小体配置的轨迹,仍然难以捉摸。在这里,我们通过整合已发表的单分子数据推断出这种动力学,这些数据捕获了从受抑制到完全活跃的 PHO5 启动子状态的多核小体配置,以及其他现有的组蛋白周转和新的染色质可及性数据。我们设计并系统地研究了一类新的“受调节的开关滑动”模型,模拟全局和局部核小体(解)组装和滑动。68,145 个模型中只有 7 个与所有数据吻合良好。所有七个模型都涉及滑动和 N-2 核小体的已知核心作用,但通过调节一个组装而不是解体过程来调节启动子状态转换。这与 PHO5 启动子先前观察结果的常见解释一致,但提出了挑战,并表明染色质通过结合竞争而开放。
合成生物学应用了电气工程和信息处理的概念,赋予细胞计算功能。将底层分子成分转移到材料中,并根据受电子电路板启发的拓扑结构进行连接,已经产生了执行选定计算操作的材料系统。然而,现有构建块的有限功能限制了将高级信息处理电路实现到材料中。在这里,设计了一组基于蛋白酶的生物混合模块,其生物活性可以被诱导或抑制。在定量数学模型的指导下,遵循设计-构建-测试-学习 (DBTL) 循环,模块根据受电子信号解码器启发的电路拓扑进行连接,这是信息处理的基本主题。设计了一个 2 输入/4 输出二进制解码器,用于检测材料框架中的两个小分子,这些小分子可以以不同的蛋白酶活性形式执行受调节的输出。这里展示的智能材料系统具有很强的模块化,可用于生物分子信息处理,例如在高级生物传感或药物输送应用中。
简单的摘要:铁铁作用是一种受调节的细胞死亡形式,其特征是脂质过氧化脂蛋白积累,并参与了各种疾病,包括神经退行性疾病。但是,仍然只有少数关于肌萎缩性侧索硬化症(ALS)的报道。这项研究表明,FUS-ALS引起的突变是否导致了对铁铁作用的脆弱性。与对照条件相比,表达ALS突变的HELA细胞和IPSC衍生的脊柱运动神经元均表现出更高的炎症诱导剂的脆弱性。的发现表明,FUS突变下调XCT,从而干扰谷胱甘肽的代谢,增加氧化应激并增强脂质过氧化。铁螯合,抑制脂质过氧化作用和线粒体钙单位钙的细胞降解,表明了与FUS相关的ALS的潜在治疗靶标。这项研究进一步强调了脂质过氧化和铁凋亡在与FUS相关的ALS中的作用。
肺癌 (LC) 是全球最常见的恶性肿瘤之一,也是导致癌症死亡的主要原因。LC 的常见致癌驱动因素主要包括 EGFR、ALK、KRAS、BRAF、ROS1 和 MET 的基因变异。选择性靶向这些变异或/及其下游信号通路的小抑制分子和抗体已被批准用于治疗 LC。不幸的是,在对这些靶向疗法产生最初的积极反应后,由于出现耐药机制(例如这些基因的新突变和替代信号通路的激活),大量患者的预后不佳。在过去十年中,人们已经清楚地认识到,除非通过治疗干预诱导有效的抗肿瘤免疫反应,否则 LC 不可能治愈。免疫原性细胞死亡 (ICD) 是一个新出现的概念,是一种受调节的细胞死亡形式,足以激活针对肿瘤细胞的适应性免疫反应。它将垂死的癌细胞转化为治疗性疫苗,并刺激持久的保护性抗肿瘤免疫。本综述讨论了肺癌中可靶向的关键基因畸变及其 ICD 的潜在机制。总结了诱导 ICD 的各种药物,并进一步探讨了在肺癌免疫治疗中利用 ICD 的可能性。
摘要:植物已被用作各种医疗状况的一种治疗方法,超过80%的人口依赖于医疗保健。姜黄素是Curcuma Longa L.的芳香香料,是该列表的重要贡献者。姜黄素是无毒的,并且具有许多益处,包括抗炎,抗菌素,抗氧化剂和镇痛特性。It contains a high number of antioxidants, which can help treat various ailments, including digestion, smallpox, skin cancer, wound healing, body weight, neurological illnesses, cardiovascular diseases, erectile dysfunction, malaria, chicken pox, urinary tract infections, conjunctivitis, rheumatoid arthritis, chronic anterior uveitis, and liver ailments.姜黄素还用于增强整体能量,消除蠕虫,调节月经和解决消化系统疾病。姜黄素是一种多功能的药理学化合物,具有有效的治愈性和受调节的化学生物学特性,可有效解决各种人类健康状况。但是,它也可能具有毒性作用。由于其生物利用度差,吸收速度缓慢,代谢快速和强制性消除。为增强姜黄素生物利用度,已经使用了抑制姜黄素代谢途径的药物。本综述提供了姜黄素及其有毒作用的多种药用益处的全面概述。
摘要:受体酪氨酸激酶 (RTK) 是一种跨膜受体,可结合生长因子和细胞因子,并在其胞质域内含有受调节的激酶活性。RTK 在正常细胞和恶性细胞的信号转导中起着重要作用,其编码基因属于癌细胞中最常受影响的基因。TAM 家族蛋白 (TYRO3、AXL 和 MERTK) 参与多种生物过程:免疫调节、凋亡细胞清除、血小板聚集、细胞增殖、存活和迁移。最近的研究表明,TAM 在肿瘤发生和抗肿瘤免疫抑制方面具有重叠的功能。MERTK 和 AXL 在先天免疫细胞中起作用,以抑制炎症反应并促进免疫抑制性肿瘤微环境,而 AXL 表达与肿瘤的上皮-间质转化、转移和运动性相关。因此,TAM RTK 在癌症中代表双重靶点,因为它们在肿瘤细胞存活、迁移、化学抗性以及在肿瘤微环境 (TME) 中的免疫抑制作用中具有内在作用。在这篇综述中,我们讨论了 TAM 作为癌症治疗中新兴治疗靶点的潜力。我们严格评估和比较了目前针对实体瘤中 TAM RTK 的方法以及针对 TAM 受体激酶胞外和胞内域的新抑制剂的开发。
前列腺癌(CAP)仍然是西方男性癌症死亡的第二大原因。发生这些死亡是因为转移帽获得了对可用治疗的抵抗力。在过去的十年中,在诊所中引入的新型和功能多样的治疗方案最终引起了分子基础各种各样的耐药性。CAP的起始和进展均与增强的细胞增殖和细胞周期失调有关。对控制细胞分裂和帽进展过程中控制细胞分裂和增殖的特定促增殖性分子移位有更好的了解最终可能会克服耐药性。在这里,我们研究文献以支持这种可能性。我们首先回顾了最近对前列腺细胞类型的新见解及其增殖和致癌潜力。然后,我们概述了负责细胞周期进展的分子机械的基本知识及其通过良好认可的瓶盖进展驱动因素(例如雄激素受体和视网膜细胞母细胞瘤蛋白)的调节。在这方面,我们特别关注细胞周期调节剂与雄激素受体之间的相互作用和相互相互作用。在从治疗过程中,到castration-castration-recurrent的进展过程中,会影响细胞周期相关的和受调节的基因,并在某些情况下,讨论了神经内分泌帽。我们还考虑了影响细胞周期决定因素的非基因组事件,包括在帽进展过程中发生的转录,表观遗传和微环境开关。最后,我们评估了细胞周期调节剂的治疗潜力,并解决了调节其CAP治疗作用的方法中的挑战和局限性。
前列腺癌(CAP)仍然是西方男性癌症死亡的第二大原因。发生这些死亡是因为转移帽获得了对可用治疗的抵抗力。在过去的十年中,在诊所中引入的新型和功能多样的治疗方案最终引起了分子基础各种各样的耐药性。CAP的起始和进展均与增强的细胞增殖和细胞周期失调有关。对控制细胞分裂和帽进展过程中控制细胞分裂和增殖的特定促增殖性分子移位有更好的了解最终可能会克服耐药性。在这里,我们研究文献以支持这种可能性。我们首先回顾了最近对前列腺细胞类型的新见解及其增殖和致癌潜力。然后,我们概述了负责细胞周期进展的分子机械的基本知识及其通过良好认可的瓶盖进展驱动因素(例如雄激素受体和视网膜细胞母细胞瘤蛋白)的调节。在这方面,我们特别关注细胞周期调节剂与雄激素受体之间的相互作用和相互相互作用。在从治疗过程中,到castration-castration-recurrent的进展过程中,会影响细胞周期相关的和受调节的基因,并在某些情况下,讨论了神经内分泌帽。我们还考虑了影响细胞周期决定因素的非基因组事件,包括在帽进展过程中发生的转录,表观遗传和微环境开关。最后,我们评估了细胞周期调节剂的治疗潜力,并解决了调节其CAP治疗作用的方法中的挑战和局限性。
摘要:中性粒细胞外陷阱(NET)是复杂的,基于DNA的,具有细胞毒性蛋白的网络状结构。它们在抗菌防御中起着至关重要的作用,但也与自身免疫性疾病和组织损伤有关。净形成过程(称为Netosis)是一种受调节的细胞死亡机制,涉及这些结构的释放,并且是中性粒细胞独有的。Netosis在很大程度上取决于活性氧(ROS)的产生,可以通过NADPH氧化酶(NOX)或线粒体途径产生,分别导致NOX依赖性或与NOX无关的Netosis。最近的研究表明,在不同情况下,ROS产生,DNA修复和净形成之间存在复杂的相互作用。紫外线辐射可以触发由线粒体ROS和DNA修复驱动的Netosis和凋亡的组合过程,称为凋亡。同样,在钙离子载体诱导的Netosis中,ROS和DNA修复都是关键组成部分,但仅发挥部分作用。在细菌感染的情况下,DNA修复的早期阶段是关键的。有趣的是,在无血清条件下,自发性Netosis是通过NOX衍生的ROS发生的,并具有早期DNA修复抑制可以停止该过程,而后期抑制会增加。DNA修复过程与ROS产生之间的复杂平衡似乎是调节净形成的关键因素,其不同的途径根据刺激的性质而被激活。这些发现不仅加深了我们对Netosis背后机制的理解,而且还提出了对网络有助于疾病病理学的疾病的潜在治疗靶标。