气候变化,全球现象,通过温度升高和下降,气候区域的变化,疾病/害虫爆发等,对水果和蔬菜的生长和发展产生正面和负面影响。本评论论文旨在描述最近的气候变化模式及其对尼泊尔水果和蔬菜生产的影响。由于气候区的转移,在较高高度生长的热带水果和蔬菜引起的归因于各种生长阶段的显着影响,因为成熟度延迟,成熟延迟;质量不佳的水果,颜色发育不良,水果的晒伤,花朵出现不佳,授粉不当等。研究表明,随着暴露于极端温度,作为适应性机制的昆虫可能会在其体内产生热休克蛋白,冷冻保护剂和渗透剂化合物,以在极端状态下生存。较高的温度会诱导早期开花,导致果实较差,因为夜间低温引起的异常。在蔬菜中,据报道,番茄植物的发生率增加了各种疾病,例如晚枯萎病,叶片卷曲和黑点,气候波动突然发作。因此,审查表明,与果实和蔬菜研究,尼泊尔的教育和发展有关的组织必须组织起来,并努力努力带来新的遗传进步,例如生物技术,组织培养和/或倡议,以适应/减轻/减轻气候的不良效应,例如高密度种植和促进高产的生产和繁荣的生产,并促进繁荣的生产力,增强了繁荣的生产,并促进繁荣的繁荣,并促进繁荣的生产力。尼泊尔迅速涌现的人口。
在暴露和/或遥远的海洋地点进行水产养殖是一个新兴的行业和研究领域,旨在解决提高粮食安全的需求以及城市和沿海利益相关者向近岸和受保护的海洋水域扩张所带来的挑战。这一举措需要创新的解决方案,以使该行业在高能量环境中蓬勃发展。一些创新研究增加了对物理学、流体动力学和结构要求的理解,从而可以开发适当的系统。蓝贻贝 ( Mytilus edulis )、新西兰绿壳贻贝 ( Perna canaliculus ) 和太平洋牡蛎 ( Magallana gigas ) 是商业暴露双壳类水产养殖的主要目标。研究人员和业内成员正在积极推进现有结构,并为这些结构和适合此类条件的替代高价值物种开发新结构和方法。对于大型藻类(海藻)养殖,例如糖海带 ( Saccharina latissimi )、桨草 ( Laminaria digitata ) 或海带属。 (Ecklonia sp.)延绳系统被广泛使用,但需要进一步发展以承受完全暴露的环境并提高生产力和效率。在海洋鱼类养殖中,开放式海洋网箱设计主要有三种:柔性重力网箱、刚性巨型结构、封闭式网箱和潜水式网箱。随着水产养殖进入要求更高的环境,必须集中精力提高运营效率。本出版物考虑了与水产养殖扩展到暴露海域的要求有关的商业和研究进展,特别关注双壳类、大型藻类的养殖以及海洋鱼类养殖技术和结构发展。
气候模型和分析的改进使科学家通过观察降雨,温度和其他因素的记录来确定人类对气候的影响的“指纹”。然后可以将这些指纹与诸如El Nino振荡之类的自然因素区分开。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
•1)科学家对气候变化的了解,包括科学不确定性; •2)气候变化如何影响对美国重要的特定主题; •3)接下来25至100年的气候变化趋势和预计趋势。
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
基于区域的管理工具(ABMT),包括海洋保护区(MPA)通常是静态的,无法反映海洋生态系统的动态现实。海洋生态系统的特征是它们的体现不断变化,这进一步由人为应激源(尤其是气候变化)扩大。ABMT和MPA的前提是以环境平衡的隐式假设,因为它们的边界和管理框架通常被固定,并且很难进行调整。本文试图在静态保护策略与海洋生态系统的深刻和天生的动态性质之间揭开张力。它进一步旨在推进动态ABMT的概念,提出了对ABMT治理的综合概念化,这种概念更容易应对复杂海洋生态系统提出的复杂海洋生态系统动态的挑战类型。的动态被广泛地解释为包含三个维度:空间,具有流动和可调的保护措施;规范性,表示一种动荡和自适应的管理框架,该框架利用生态和管理阈值作为适应性,及时和前瞻性方法来增强管理结果的发起人;和制度,即,充分灵活而动态的机构机制负责监督ABMT实施。在对动态ABMT的全面概念化之后,本文解决了以下问题,管理着海洋的法律框架是否可以维持这种动态的海洋治理模式。
气候变化显着影响我们的农作物及其耕种地区,预计到本世纪末将有很大变化。温度条件果断地影响了给定位置中葡萄的安全适用性。为了解决这些变化,我们分析了四个温度指标的时间变化:平均生长季节温度(AGST),增长程度天(GDD或Winkler指数(GDD-WI)(GDD-WI),HUG LIN INDEX(HI)(HI)以及在1971年至2100年的22个匈牙利葡萄酒区域(BEDD)和生物学上有效的天数(BEDD)。该分析基于RCP 4.5和RCP 8.5方案的14个气候模型的数据。为了调查葡萄酒的未来适用性,我们引入了动态适用性函数,这使我们能够分析生长季节中平均温度的适用性,以纪念21种葡萄酒葡萄品种,从2031年到2100种decadal增量。此外,基于生长季节的平均温度,引入了温度影响函数,以表征21种葡萄酒葡萄品种的适用性,其值范围从0到1。结果证实,葡萄种植中使用的温度指数的频率将来会明显转向更温暖的气候类别。越来越温暖的气候带来了某些优势,但也具有日益增长的耕种风险。在最乐观的情况下,在接下来的七十年中,生长季节期间的平均温度可能会降低0.8°C。然而,在最悲观的模型中,预期的变化到本世纪末的变化超过4.0°C。对于较低热量需求的葡萄酒葡萄品种,在悲观的RCP 8.5发射方案下的适用性预计将在本世纪末降低29%。相反,在乐观的情况下,适用性值的下降仅在3-4%之间。对于具有较高热量需求的葡萄品种,在RCP 8.5方案下,适用性将降低10%。相比之下,RCP 4.5场景表明,到本世纪末,适用性可以提高1-2%。这些发现有助于更好地理解气候变化的影响和后果,并就如何为葡萄栽培部门的这些挑战做准备的见解。
与许多其他环境一样,海洋和沿海环境容易受到气候变化的影响(IPCC,2023年)。海洋占据了世界表面的70%,具有巨大的生物量生产潜力,但是气候压力源会影响生态系统功能以及水生生物的健康和生长。了解气候变化将如何影响海洋粮食生产,因此可能的适应策略至关重要。虽然木磨坊的产量稳定或下降,但据信水产养殖在粮食安全中起着越来越重要的作用,有助于供应高质量的粮食,以满足不断增长的地方和地区社区以及全球人口的需求(Aksnes等人,2017年,2017年; FAO,2024年)。因此,我们必须考虑不断变化的海洋环境如何支持可持续的粮食生产。海洋热含量的观察记录表明,海洋变暖正在加速(Cheng等,2019)。海洋热浪(MHW)是异常的温暖海水事件,可能会对海洋生态系统产生重大影响(Oliver等,2021)。全球海平面上升和沿海流量的预测显示,随着极端事件变得更加激烈,许多物种的脆弱性水平增加了(Voustdoukas等,2018)。但是,关于气候变化对粮食生产的影响有许多知识差距,从根本上讲,由于影响暴露,风险水平和适应潜力的因素有许多不同的因素(Falconer等,2022)。研究主题,例如“不断变化的海洋中的粮食生产潜力”,以增加该主题的重点和相关性。结果该研究主题包含七个原始研究文章和一个观点。两篇研究文章考虑捕获猎犬,而其他研究则关注水产养殖。研究包括一系列实验,分析和建模方法,以解决与整体研究主题保持一致的问题。对粮食产量增加的需求正在给全球野生种群带来额外的压力,而捕虫的开发过多是一个主要风险。挑战之一是影响人口水平的多种因素,Yulianto等人研究了这一研究主题。Yulianto等人专注于印度尼西亚的蓝色游泳蟹(Portunus pelagicus)。结合了一系列方法来评估填充性的可持续性,并通过多个方面的方法来改善实践,从而整合技术,政策,监管和监测。在对Bigeye Tuna(Thunnus obesus)的薄片的分析中,Ding等人。使用鱼类库存的预测模型来分析气候变化对捕获的影响。