尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
森林在地面碳循环中至关重要,并且对它们对持续气候变化的反应的了解对于确定未来的碳浮动和气候轨迹至关重要。在具有对比季节的区域,树木形成可以分配给日历年的离散年环,从而可以提取有关树木对环境的反应的宝贵信息。木材的解剖结构提供了有关树木对气候的反应和适应的高度分辨信息。定量木材解剖结构有助于通过使用木材微剖面的高分辨率图像在细胞水平上测量木材来检索这些信息。然而,尽管在识别细胞结构方面已经取得了很大的进步,但获得有意义的细胞信息仍然受图像上正确的年度树环界定的阻碍。这是一项耗时的任务,需要经验丰富的操作员手动界定环边界。基于像素值的自动分割的经典方法正在用能够区分结构的新方法代替,即使分界需要高水平的专业知识。尽管已使用神经网络进行木环的分割,但木制的木材图像,但阔叶物种染色的微观切片中细胞模式的复杂性需要自适应模型才能准确地完成此任务。我们在山毛榉核心染色的横截面微隔板图像上使用神经网络提出了自动树环边界划定。基于卷积神经网络的应用我们训练了一个UNETR,一个UNET的联合神经网络和视觉变压器的注意机制,以自动分段年度环边界。考虑到具有手动分割的差异以及数量木材解剖学分析目标的差异以及差异的后果。在大多数情况下(91.8%),自动分割匹配或改进了手动细分,即使将手动细分视为更好的情况,两种类别之间的船只分配率也相似。
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
视觉语言(VL)模型已获得了显着的重点,从而在多模式推理方面取得了显着进步。这些体系结构通常包括视觉编码器,大型语言模型(LLM)和一个将视觉特征与LLM的代表空间保持一致的投影模块。尽管他们成功了,但仍然存在一个关键的限制:愿景编码过程仍然与用户查询相关,通常是以与图像相关的问题的形式。因此,所得的视觉特征可能无法最佳地调整图像的特定元素。为了解决这个问题,我们介绍了QA-Vit,这是一种问题的多模式原因,这是一种问题,将问题意识直接嵌入到视觉编码器中。此集成导致动态视觉特征,重点是提出问题的相关图像方面。QA-VIT是模型 - 静态的,并且可以有效地将其置于任何VL体系结构中。广泛的经验证明了将我们的方法应用于各种多模式体系结构的有效性,从而导致跨不同任务的一致改进,并展示了其以增强视觉和场景文本理解的能力。
摘要:本文解决了香草视觉变压器中与多头自我注意(MHSA)相关的高计算/空间复杂性。为此,我们提出了层次MHSA(H-MHSA),这是一种新颖的方法,以层次的方式计算自我注意力。具体来说,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,提议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小斑块合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。终于,将本地和全球专注的特征汇总为具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此计算负载大大减少。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的环境关系。与H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明帽子网络在场景中的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象titection和实例分段。因此,HAT-NET为视觉变压器提供了新的视角。代码和预估计的模型可在https://github.com/yun-liu/hat-net上找到。
通过社交媒体和变形金刚模型了解躁郁症:挑战和见解葡萄etsrivastava*,Lokesh Boggavarapu*,Anthony Shin*,Anthony Shin*,Avisek Datta,Yingda Lu,runa bhaumik **伊利诺伊州芝加哥**伊利诺伊州芝加哥大学的同等贡献者**相应的社交媒体* (BD)仍然显着未充满意。复杂性是由与抑郁和焦虑相关的语言模式的重叠产生的,使准确的识别挑战。本研究旨在基准在Reddit帖子上训练的各种变压器模型的性能,以将BD与其他心理健康状况区分开。使用高性能生成AI模型(GPT-4O)作为基准,分析表明某些开放小型模型(ex。MISTRAL,LLAMA)在捕获与BD相关的微妙语言线索方面表现出色,以高精度和召回率达到高达0.86的F1得分。但是,BD经常被错误分类为抑郁症(23%–51%),正常(2%–41%)和焦虑症(1%–7%),强调了对改进方法的需求。该研究强调了特定于域数据的重要性以及更细微的模型以增强BD检测准确性,为更有效的心理健康监测和及时干预铺平了道路。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。
现在几乎可以测量植物的所有部分,但是评估植物基因组的大小仍然具有挑战性。尽管可以在显微镜下测量染色体大小(Albini,1994),但通常未知单细胞中所有DNA分子的合并长度。在第一个拟南芥基因组序列释放近25年后,对于最重要的模型之一而言,这甚至是正确的。最初,诸如Reassociation Kinetics之类的生化方法(Leutwiler等人,1984),Feulgen光度法(Bennett&Smith,1991),定量凝胶印迹杂交(Francis等人。,1990年),Southern印迹(Fransz等人,2002)和流式细胞仪(Arumuganathan&Earle,1991; Bennett&Leitch,2011)。不幸的是,这些实验方法依赖参考基因组(Bennett等人。,2003)。下一代测序技术的兴起(Metzker,2010年)启用了基于K-MER配置文件或唯一K-Mers计数的新方法(Li&Waterman,2003;Marçais&Kingsford,2011年)。水母(Marçais&Kingsford,2011年),Kmergenie(Chikhi&Medvedev,2014年),
我们报告了能够对齐多个核苷酸序列的卷积变压器神经网络。神经网络基于图像分割中常用的U-NET,我们采用了该神经网络将其用于将未对准序列转换为对齐序列的U-NET。对于对齐场景,我们的ALI-U-NET神经网络已经接受过培训,在大多数情况下,它比MAFFT,T-Coffee,Muscle和Clustal Omega等程序更准确,同时比单个CPU核心上的类似准确的程序快得多。的限制是,神经网络仍针对某些对齐问题进行了专门训练,并且对于以前从未见过的差距分布而表现不佳。此外,该算法当前与48×48或96×96核苷酸的固定尺寸比对窗口一起工作。在此阶段,我们将研究视为概念证明,确信目前的发现可以扩展到更大的一致性,并在不久的将来将其扩展到更复杂的一致性方案。