*根据需要调整和/或补充以满足性能规格。注意:Slanetz Bartley琼脂可以作为完整的培养基和琼脂碱提供,可与TTC 1%补充剂一起使用(请参阅“订单Informaton”部分)。方法原理教to糖为生物生长提供氨基酸,氮,碳,维生素和矿物质。酵母提取物是维生素的来源,尤其是B组。葡萄糖是可发酵的碳水化合物提供碳和能量。磷酸二磷酸二磷酸是一种缓冲液。叠氮化钠抑制革兰氏阴性细菌和葡萄球菌。ttc是细菌生长的氧化还原指标,在氧化形式中无色,并减少为不溶性的红色triphenyl formazan。琼脂是固化剂。制备用TTC悬浮的培养基脱水介质44.5 g粉末1升蒸馏水或去离子水。混合良好。加热沸腾直至完全溶解。请勿自压。将适当的体积分配到板上,例如将20毫升培养基倒入90毫米的培养皿中。没有TTC的脱水培养基悬浮44.4 g粉末中的1升蒸馏水或去离子水。混合良好。加热沸腾直至完全溶解。请勿自压。冷却至45-50°C。在分发到培养皿之前,加入10 ml TTC 1%补充剂。所需的材料但未提供标准的微生物供应和设备,例如:测试管,接种环,孵化器,质量控制生物。测试程序
摘要:多药理学的概念包括多种药物联合治疗方案(药物组合或鸡尾酒疗法)、固定剂量组合(FDC)以及与不同靶点结合的单一药物(多靶点药物)。多药理学方法广泛应用于获得性免疫缺陷综合征(AIDS)的治疗,为数百万艾滋病毒感染者提供挽救生命的疗法。尽管联合抗逆转录病毒疗法(cART)在抑制病毒载量和延长患者生存期方面取得了成功,但由于出现了耐药菌株和患者对 cART 的依从性较差,开发新药已成为当务之急。3′-叠氮-2′,3′-双脱氧胸苷,也称为叠氮胸苷或齐多夫定(AZT),由于其良好的抗逆转录病毒活性,是寻找新化合物的广泛使用的起始支架。通过分子杂交这一药物化学工具,AZT 已被纳入多种化合物的结构中,从而可以开发多靶点定向配体 (MTDL) 作为抗逆转录病毒药物。本综述旨在系统地探索和批判性地讨论基于 AZT 的化合物作为治疗艾滋病的潜在 MTDL。综述结果使我们得出结论:(i) AZT 杂化物仍然值得探索,因为它们可以提供针对 HIV-1 复制周期不同步骤的高活性化合物;(ii) AZT 是制备具有增强细胞渗透性的辅助药物的良好起点。
摘要:甲基化是一种广泛存在的天然修饰,具有多种调节和结构功能,由大量 S -腺苷-L -蛋氨酸 (AdoMet) 依赖性甲基转移酶 (MTases) 进行。AdoMet 辅因子由多聚体蛋氨酸腺苷转移酶 (MAT) 家族从 L -蛋氨酸 (Met) 和 ATP 产生。为了推进机制和功能研究,已经开发出重新利用 MAT 和 MTase 反应以接受来自相应前体的可转移基团的扩展版本的策略。在这里,我们使用结构引导的小鼠 MAT2A 工程,以便从合成的蛋氨酸类似物 S -(6-叠氮己-2-炔基)-L -同型半胱氨酸 (N 3 -Met) 生物催化生产扩展的 AdoMet 类似物 Ado-6-叠氮化物。三种工程化的 MAT2A 变体表现出对延伸类似物的催化能力,并且在没有和存在竞争性 Met 的情况下,都支持与 M. Taq I 和小鼠 DNMT1 的工程化变体在级联反应中进行 DNA 衍生化。然后,我们使用 CRISPR-Cas 基因组编辑将两种工程化变体作为 MAT2A-DNMT1 级联安装在小鼠胚胎干细胞中。所得细胞系在暴露于 N 3 -Met 且存在生理水平的 Met 时,保持正常的活力和 DNA 甲基化水平,并显示出 Dnmt1 依赖的 DNA 修饰和延伸叠氮化物标签。这首次展示了一种用于生物合成生产延伸 AdoMet 类似物的遗传稳定系统,该系统能够在活哺乳动物细胞中对 DNMT 特异性甲基化组进行轻度代谢标记。■ 简介
微生物在土壤中发挥着至关重要的生态作用,但先前微生物留下的残留 DNA 会导致对活体微生物功能和多样性的估计不准确。为了解决这个问题,我们提出了一种使用 Benzonase 核酸内切酶去除土壤中残留 DNA 的新方法,并将其与广泛应用于活体微生物组研究的叠氮丙啶 (PMA) 和 DNase I 进行了比较。与 PMA 不同,Benzonase 不需要光激活,适用于土壤等不透明介质。因此,其去除土壤残留 DNA 的效率 (40%−60%) 是 PMA (0−30%) 的两倍。此外,我们的结果表明,Benzonase 在大多数土壤中的表现优于 DNase I,这可能是因为与 DNase I 相比,它的操作条件范围更广。除了更高的残留 DNA 去除效率外,Benzonase 对土壤活体微生物群落的影响较弱。随后,利用 Benzonase 去除天然土壤中的残留 DNA,结果表明,残留 DNA 去除导致微生物多样性和丰富度平均降低约 10%。值得注意的是,它导致特定类群(如芽孢杆菌和鞘氨醇单胞菌)的相对丰度发生显著变化。这些发现揭示了土壤中总微生物组和活体微生物组之间的差异。我们的研究不仅为土壤残留 DNA 去除提供了一种可靠的方法,而且强调了残留 DNA 去除对活体土壤微生物组评估的必要性,为推进土壤微生物生态学研究奠定了方法论基础。
摘要。低聚聚乙二醇 (PEG) 链中的振动能量传输可以通过光学振动链带以弹道方式进行,表现出快速而恒定的传输速度和高传输效率,从而提供了将超过 1000 cm -1 的大量能量传输到超过 60 Å 的远距离的方法。我们报告了分子内能量传输时间、链间传输速度和端基冷却速率如何取决于环境的刚性和极性。实验使用端基标记的 PEG 低聚物和二维红外 (2DIR) 光谱进行。弹道能量传输在链的一端通过在约 2100 cm -1 处激发叠氮基部分来启动,并通过探测琥珀酰亚胺酯的羰基拉伸模式在链的另一端记录下来。我们发现环境的刚性(聚苯乙烯 (PS) 基质与极性相似的溶液)不会对能量传输时间和链传输速度产生太大影响。这些结果表明,在弱极性介质中,尽管溶液中存在快速松弛成分,但溶液中发生的动态波动(但在固体基质中基本冻结)并不是链状态失相的主要原因。不同介质中传输时间的相似性表明二级链结构对 PEG 链中的传输影响不大。溶剂极性显著影响分子内传输:极性 DMSO 中的传输效率比非极性 CCl 4 或 PS 中的传输效率小约 1.6 倍。在极性更强的溶剂中,琥珀酰亚胺酯端基的冷却时间缩短,影响等待时间依赖形状,从而影响能量到达报告器的时间。本文分析了从数据中提取能量到达时间的不同方法。观察到的链间传输时间对溶剂极性的依赖性表明存在多个以不同群速度在 PEG 链中传播的波包。1. 简介。
核糖体 RNA 的 OH 甲基化。此外,RBRP 能够以核苷酸水平的精度映射含有 poly(A) 尾的 ~16,000 个 RNA 上的结合位点,并揭示 RNA-药物结合、RNA 结合蛋白 (RBP) 以及 RNA 结构可及性和动力学之间的复杂相互作用。结果与讨论 RBRP 解码体内蛋白质靶向小分子药物的转录组相互作用。我们的分析方法涉及使用细胞通透性的 RNA 酰化探针(采用酰基咪唑取代的连接子在 RNA 2′-OH 基团处发生反应)来评估和量化药物结合细胞 RNA 的趋势(图 1d)。药物的酰基咪唑缀合物与结构化 RNA 或蛋白质-RNA 界面的结合应导致酰化 2′-OH 在药物结合位点附近富集。我们通过修改体内 RNA 映射协议 20、通过 poly(A) 下拉分析信使 RNA (mRNA) 和非编码 RNA (ncRNA) 并对得到的文库进行高深度测序(每个重复>1100 万个读取)来识别这种结合促进的酰化。具体而言,RNA 药物结合位点富含酰化的 2′-OH 基团,这会导致逆转录酶 (RT) 停止。这些停止通过生物素介导的下拉 20 和与未修饰药物的竞争在随机 RNA 断裂和随机位点反应中富集。这种比较工作流程使我们能够在整个细胞 RNA 群体中精确定位和量化结合位置;只有与未修饰药物表现出竞争的位点才被评为真正的药物结合位点。RBRP 揭示了羟氯喹 (HCQ) 的转录组相互作用。作为对小分子药物体内转录组相互作用的初步评估,我们在人胚胎肾细胞 HEK293 中使用含有叠氮基“点击”手柄的药物羟氯喹 (HCQ) 的酰基咪唑缀合物进行了 RBRP 实验原型 (图 2a-b)。HCQ 最初被批准用于治疗疟疾,最近被研究用于治疗 COVID-19 感染,已知会导致原因不明的视网膜病变和心肌病 21,22。鉴于其融合的芳香环和正电荷,以及它与已知 RNA 结合剂的结构相似性,其结构表明可能对折叠 RNA 具有亲和力 (图 2a,右图)。为了测试这种可能性,我们在没有或存在过量竞争药物 (未修饰的 HCQ) 的情况下用 HCQ 的酰化类似物 (HCQ-AI,图 2b) 处理 HEK293 细胞 30 分钟,并对 poly(A)+ 转录本进行 RBRP。我们使用 icSHAPE 管道 20,23(读取深度= 200 作为阈值)来
Tanmoy Sarkar 和 Tanmoy Mondal DOI:https://doi.org/10.33545/2664844X.2024.v6.i2c.220 摘要 遗传变异对于作物育种至关重要。在传统的植物育种计划中,这种变异是通过杂交产生的,并从由此产生的分离世代中进行选择。诱发诱变可以补充或取代杂交作为变异源。引入变异的突变是新形式、品种或物种进化的基础。诱发突变和自发突变都对各种果树作物改良品种的开发做出了重大贡献,补充了传统的育种方法。虽然诱发突变在果树育种应用中有明确的局限性,但可以通过使用体外突变技术来扩大其潜力。 关键词:遗传变异、突变育种、果树作物、杂交 介绍 突变育种已经成为现代农业中一种变革性和有效的工具,特别是在果树作物改良领域。通过诱发突变(改变植物的遗传物质),育种者可以产生新的遗传变异,从而培育出具有理想性状的果树品种,如提高产量、增强抗病性、提高果实品质和增强对环境压力的耐受性。传统上,植物育种依靠杂交和选择来改良果树。然而,这些方法往往有局限性,特别是在克服遗传瓶颈、自交不亲和或某些果树品种的幼年期较长等问题时。突变育种通过创造更广泛的遗传多样性库提供了一种解决方案,使其成为传统育种方法的宝贵补充。过去几十年来,突变育种在果树中的应用经历了长足的发展。技术进步,特别是体外培养系统的进步,提高了突变诱导的精确度和效率。现代分子工具和基因组技术的结合,如新一代测序、标记辅助选择和基于 CRISPR 的基因组编辑,进一步完善了突变育种,使水果基因组的改变更具针对性和可控性。因此,现在的水果作物育种比以往任何时候都更快速、更准确、更可持续。本文深入探讨了突变育种的历史、方法和最新进展,强调了其在水果作物改良中的作用、特定水果品种的主要成就以及该领域的光明未来(Ahloowalia 等人,2004 年)[1]。突变育种在水果作物改良中的作用任何育种计划的主要目的都是增加作物种群的遗传多样性,以选择对农民和消费者都有益的性状。在水果作物中,果实大小、颜色、风味、抗病虫害能力以及对干旱、盐度和极端温度等非生物胁迫的耐受性等理想特性对于提高生产力、适销性和可持续性至关重要。然而,通过传统育种方法实现这些特性通常速度慢、成本高且效率低,尤其是对于需要几年才能成熟的果树等多年生作物。这就是诱变育种发挥作用的地方。诱变育种涉及使用物理(例如辐射)或化学(例如 EMS、叠氮化钠)诱变剂在植物中诱发突变,从而诱导随机遗传