Loading...
机构名称:
¥ 1.0

核糖体 RNA 的 OH 甲基化。此外,RBRP 能够以核苷酸水平的精度映射含有 poly(A) 尾的 ~16,000 个 RNA 上的结合位点,并揭示 RNA-药物结合、RNA 结合蛋白 (RBP) 以及 RNA 结构可及性和动力学之间的复杂相互作用。结果与讨论 RBRP 解码体内蛋白质靶向小分子药物的转录组相互作用。我们的分析方法涉及使用细胞通透性的 RNA 酰化探针(采用酰基咪唑取代的连接子在 RNA 2′-OH 基团处发生反应)来评估和量化药物结合细胞 RNA 的趋势(图 1d)。药物的酰基咪唑缀合物与结构化 RNA 或蛋白质-RNA 界面的结合应导致酰化 2′-OH 在药物结合位点附近富集。我们通过修改体内 RNA 映射协议 20、通过 poly(A) 下拉分析信使 RNA (mRNA) 和非编码 RNA (ncRNA) 并对得到的文库进行高深度测序(每个重复>1100 万个读取)来识别这种结合促进的酰化。具体而言,RNA 药物结合位点富含酰化的 2′-OH 基团,这会导致逆转录酶 (RT) 停止。这些停止通过生物素介导的下拉 20 和与未修饰药物的竞争在随机 RNA 断裂和随机位点反应中富集。这种比较工作流程使我们能够在整个细胞 RNA 群体中精确定位和量化结合位置;只有与未修饰药物表现出竞争的位点才被评为真正的药物结合位点。RBRP 揭示了羟氯喹 (HCQ) 的转录组相互作用。作为对小分子药物体内转录组相互作用的初步评估,我们在人胚胎肾细胞 HEK293 中使用含有叠氮基“点击”手柄的药物羟氯喹 (HCQ) 的酰基咪唑缀合物进行了 RBRP 实验原型 (图 2a-b)。HCQ 最初被批准用于治疗疟疾,最近被研究用于治疗 COVID-19 感染,已知会导致原因不明的视网膜病变和心肌病 21,22。鉴于其融合的芳香环和正电荷,以及它与已知 RNA 结合剂的结构相似性,其结构表明可能对折叠 RNA 具有亲和力 (图 2a,右图)。为了测试这种可能性,我们在没有或存在过量竞争药物 (未修饰的 HCQ) 的情况下用 HCQ 的酰化类似物 (HCQ-AI,图 2b) 处理 HEK293 细胞 30 分钟,并对 poly(A)+ 转录本进行 RBRP。我们使用 icSHAPE 管道 20,23(读取深度= 200 作为阈值)来

蛋白质靶向药物的普遍转录组相互作用

蛋白质靶向药物的普遍转录组相互作用PDF文件第1页

蛋白质靶向药物的普遍转录组相互作用PDF文件第2页

蛋白质靶向药物的普遍转录组相互作用PDF文件第3页

蛋白质靶向药物的普遍转录组相互作用PDF文件第4页

蛋白质靶向药物的普遍转录组相互作用PDF文件第5页

相关文件推荐

2000 年
¥1.0
2025 年
¥3.0