UCT将向六个杰出的人授予荣誉博士学位。开普敦大学(UCT)将向六个杰出个人授予荣誉博士学位 - 黛比·布拉德肖(Debbie Bradshaw)博士,莱昂内尔·戴维斯(Lionel Davis),莱昂内尔·戴维斯(Lionel Davis)先生,雪莉·冈恩(Shirley Gunn)女士,迈克尔·H·海登(Michael R Hayden)教授,布莱恩·亨特利(Brian Hayden)教授,布莱恩·亨特利(Brian Huntley)教授和Lehlohonolo bbj Machobane教授 - 本年度的年度颁奖典礼。 UCT副校长(Interim)名誉教授Daya Reddy说,对这些人的这种享有盛名的认可证明了他们对各自领域和整个社会的杰出贡献。 “荣誉博士学位在学术界拥有重要地位,并授予表现出典范成就的个人。 这些人是鼓舞人心的人物:他们的工作和成就与UCT的价值观以及我们成为一所包容性,研究密集型的非洲大学的愿景相吻合,该大学通过尖端的教学和研究来应对我们这个时代的挑战。”通过授予这些荣誉学位,UCT重申了其对卓越,创新和领导力的承诺 “这些人化身为卓越和社会影响的最高标准,体现了我们大学的精神,”雷迪说。 Bradshaw博士将获得一位科学博士学位(Honoris Causa)。 Bradshaw博士是一位受人尊敬的生物统计学家和流行病学家,拥有丰富的学术背景和广泛的研究经验。 她建立了有关南非健康景观的关键单位和领导的开创性研究。 戴维斯先生将获得社会科学博士学位(Honoris Causa)。UCT将向六个杰出的人授予荣誉博士学位。开普敦大学(UCT)将向六个杰出个人授予荣誉博士学位 - 黛比·布拉德肖(Debbie Bradshaw)博士,莱昂内尔·戴维斯(Lionel Davis),莱昂内尔·戴维斯(Lionel Davis)先生,雪莉·冈恩(Shirley Gunn)女士,迈克尔·H·海登(Michael R Hayden)教授,布莱恩·亨特利(Brian Hayden)教授,布莱恩·亨特利(Brian Huntley)教授和Lehlohonolo bbj Machobane教授 - 本年度的年度颁奖典礼。对这些人的这种享有盛名的认可证明了他们对各自领域和整个社会的杰出贡献。“荣誉博士学位在学术界拥有重要地位,并授予表现出典范成就的个人。这些人是鼓舞人心的人物:他们的工作和成就与UCT的价值观以及我们成为一所包容性,研究密集型的非洲大学的愿景相吻合,该大学通过尖端的教学和研究来应对我们这个时代的挑战。”通过授予这些荣誉学位,UCT重申了其对卓越,创新和领导力的承诺“这些人化身为卓越和社会影响的最高标准,体现了我们大学的精神,”雷迪说。Bradshaw博士将获得一位科学博士学位(Honoris Causa)。Bradshaw博士是一位受人尊敬的生物统计学家和流行病学家,拥有丰富的学术背景和广泛的研究经验。她建立了有关南非健康景观的关键单位和领导的开创性研究。戴维斯先生将获得社会科学博士学位(Honoris Causa)。戴维斯先生于1936年出生于开普敦的第六区,忍受了种族隔离的不公正现象,在罗本岛(Robben Island)服务于破坏活动。尽管受到限制,他还是在社区艺术项目中教授艺术,后来与帽海报工作室共同创立了反种族隔离行动主义的组成部分。
桃(Perrunus persica)Landrace具有典型的区域特征,强大的环境适应性,并包含许多有价值的基因,为繁殖优秀品种奠定了基础。因此,有必要组装特定陆地的基因组,以促进这些基因的定位和利用。在这里,我们从头组装了一个来自中国北平原的古老血液中国兰德·舒伊米(TJSM)的高质量基因组。组装的基因组大小为243.5 MB,重叠元素N50为23.7 MB,支架N50为28.6 MB。与报道的桃基因组相比,我们组装的TJSM基因组具有最大数量的特定结构变体(SVS)和长时间重复返回转树(LTR-RTS)。有可能调节其宿主基因的潜力,我们在NAC转录因子编码PPBL的启动子中鉴定了6688 bp ltr-rt(命名为IT血液TE),这是一种调节乳头的基因PPBL。血液不仅与血液表型共分离,而且还与果实成熟日期的进步和血液形成的不同强度有关。我们的发现提供了有关血液颜色发展和确定水果成熟日期的基础机制的新见解,并突出了TJSM基因组对桃子水果中的农艺性状相关的更多变化的潜力。
基因复制和转录增强子的出现/修饰被认为对动物进化过程中表型创新做出了巨大贡献。尽管如此,人们对基因复制后增强子如何进化以及调控信息如何在复制基因之间重新连接知之甚少。果蝇 bric-a-brac (bab) 复合体由串联旁系同源基因 bab1 和 bab2 组成,为解决这些问题提供了范例。我们之前描述了一种调节发育足中 bab2 表达的基因间增强子 (名为 LAE)。我们在此显示直接与 LAE 结合的 bab2 调节子也控制跗骨细胞中的 bab1 表达。通过 CRISPR/Cas9 介导的基因组编辑切除 LAE 表明,这种增强子似乎参与了 bab1 和 bab2 在腿部组织中共表达,但并不是严格必需的。相反,LAE 增强子对于沿近端-远端足轴的旁系同源物特异性 bab2 表达至关重要。染色质特征和表型挽救实验表明,LAE 功能部分冗余,腿特异性调控信息与 bab1 转录单元重叠。系统基因组学分析表明 (i) bab 复合体起源于 Cyclorrhapha dipteran 亚系早期祖先单基因的复制,以及 (ii) LAE 序列在 Brachycera 亚目中很早就已进化固定,因此早于基因复制事件。这项工作为增强子提供了新的见解,特别是关于它们的出现、维持和进化过程中的功能多样化。
¶ 通讯作者。muotri@ucsd.edu。*现地址:内布拉斯加大学动物科学系,美国内布拉斯加州林肯市 68583。†现地址:密苏里大学邦德生命科学中心,美国密苏里州哥伦比亚市 65211。‡加利福尼亚大学旧金山分校 Eli 和 Edythe Broad 再生医学和干细胞研究中心,美国加利福尼亚州旧金山 94143。§哈佛医学院生物医学信息学系,美国马萨诸塞州波士顿 02115。作者贡献:ARM 和 REG 设计了该研究。CAT、NKS 和 ESR 设计了单倍型遗传和可变剪接实验,并在 BS、REG 和 ARMCAT 的帮助下进行了分析,PDN 生成并表征了皮质类器官并进行了 MEA 记录。MSAF、FSB 和 AHK 进一步分析了 MEA 记录。 CAT、JB、SP 和 AW 执行并分析了单细胞转录组学。CAT 和 RAS 执行了细胞数量、增殖和凋亡以及突触量化。CAT 和 PDN 分析了 MEA 数据。PDN 和 RAS 执行了 Ingenuity Pathways 分析和蛋白质印迹。AH 和 CAT 设计了所有形态测量实验。IAC、AAM 和 ECW 在 GWYAB 的输入下执行并分析了 eCLIP,在 CVESR 的输入下执行了 RNA 提取和文库制备实验,MM 在 ANBESR 的输入下分析了 RNA-seq 数据,NKS 进行了其他计算分析。RHH 分析了珠芯片阵列和全外显子组测序。JDL 和 SEPS 进行了共免疫沉淀数据收集和分析。KS 提供了重要意见。所有作者均审阅了稿件以供发表。
摘要:苔麸(Eragrostis tef (Zucc.) Trotter)是埃塞俄比亚 70% 人口的主食作物,目前在多个国家种植,用于生产谷物和饲料。它是营养最丰富的谷物之一,而且比玉米、小麦和大米等主要谷物更能适应贫瘠的土壤和气候条件。然而,苔麸是一种产量极低的作物,主要是由于倒伏(即茎秆不可逆转地掉落在地上)和生长季节的长期干旱。气候变化引发了多种生物和非生物胁迫,预计在可预见的未来将导致严重的粮食短缺。这就需要一种替代的、强有力的方法来提高对各种胁迫的适应力并提高作物产量。传统育种已被广泛实施,以开发具有感兴趣性状的作物品种,尽管该技术存在一些局限性。目前,基因组编辑技术作为改善关键农艺性状的一种手段,越来越受到植物生物学家的关注。本综述讨论了成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (CRISPR-Cas) 技术在提高苔麸抗逆性方面的潜在应用。已讨论了相关单子叶植物物种的几种假定的非生物抗逆基因,并提议将其作为通过 CRISPR-Cas 系统编辑苔麸的目标基因。这有望提高抗逆性并提高生产力,从而确保最需要的地区的粮食和营养安全。
摘要:苔麸(Eragrostis tef (Zucc.) Trotter)是埃塞俄比亚 70% 人口的主食作物,目前在多个国家种植,用于生产谷物和饲料。它是营养最丰富的谷物之一,而且比玉米、小麦和大米等主要谷物更能适应贫瘠的土壤和气候条件。然而,苔麸是一种产量极低的作物,主要是由于倒伏(即茎秆不可逆转地掉落在地上)和生长季节的长期干旱。气候变化引发了多种生物和非生物胁迫,预计在可预见的未来将导致严重的粮食短缺。这就需要一种替代的、强有力的方法来提高对各种胁迫的适应力并提高作物产量。传统育种已被广泛实施,以开发具有感兴趣性状的作物品种,尽管该技术存在一些局限性。目前,基因组编辑技术作为改善关键农艺性状的一种手段,越来越受到植物生物学家的关注。本综述讨论了成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (CRISPR-Cas) 技术在提高苔麸抗逆性方面的潜在应用。已讨论了相关单子叶植物物种的几种假定的非生物抗逆基因,并提议将其作为通过 CRISPR-Cas 系统编辑苔麸的目标基因。这有望提高抗逆性并提高生产力,从而确保最需要的地区的粮食和营养安全。
面临众多讲座中的选择,面临这些讲座中的选择,最终面临它们之间的选择,在某人之间做出决定。02 教育问题:这对大多数人来说都很重要,父母在教育方面的选择很常见,因为许多父母为孩子选择了教育,因为某人在这件事上没有给某人选择权,某人别无选择,只能服从,某人尚未成年,但某人仍然让某人别无选择,他们“只能按吩咐做事,直到某人成年,他们别无选择,能够上自己选择的大学,选择听取某人的建议(U),某人/一个国家可能/可能不会得到经济支持,如果只是选择接受所提供的东西或什么都不接受,或者如果你在这件事上真的没有选择权,那就是霍布森的选择,
摘要 — 人工智能渗透到无数领域,其中之一就是自然语言处理。随着人类不断努力远离机器的术语,人们开始需要将自然语言作为机器的输入。所有自然语言都表达了大量的歧义。虽然人类在使用中可以正确地解释这些语言,但对于缺乏根据上下文区分各种解释能力的计算机来说,这种歧义是一种弊端。因此,当今需要一种能够在很大程度上消除这种歧义的语言,同时又适合在人工智能系统中表示知识。梵语已经流行了数千年,在人类使用过程中没有磨损和变形,可以用来表示这种知识
许多人关心如何妥善保护和管理不列颠哥伦比亚省的古老森林生态系统。我们直接与近 800 人进行了交谈,并通过调查、书面意见和电子邮件听取了数千人的意见。我们感谢大家分享他们的知识和意见。人们的观点往往充满激情,对古老森林和土地管理表现出真诚的兴趣。除了科学研究和数据外,人们还分享了他们个人的观察、观点和关于需要做什么的想法。在许多情况下,我们收到的信息和好主意是关于更广泛的土地使用政策,有时他们关注如何管理特定的一块土地。我们特别感谢几乎每一位对话参与者采取的建设性态度,以及我们需要找到更好的方法来管理古老森林的共同观点,以实现广泛的利益和理由。
抗性-结瘤-分裂家族 (RND) 的外排泵是革兰氏阴性菌内在抗生素抗性的主要贡献者。在该家族中,MdtABC 泵的不同寻常之处在于它具有两个内膜组件。这两个组件 MdtB 和 MdtC 是同源物,因此很明显这两个组件是由基因复制产生的。在本文中,我们描述了在其他 RND 背景下对 MdtBC 泵进行系统发育分析所获得的结果。我们表明,各个内膜组件(MdtB 和 MdtC)在整个变形菌种中都是保守的,它们的存在是单个基因复制的结果。我们认为这种基因复制是一个古老事件,发生在变形菌分为 Alpha、Beta 和 Gamma 类之前。此外,我们发现 MdtABC 泵和铜绿假单胞菌的 MexMN 泵具有密切的共同祖先,这表明 MexMN 泵是由原始 Mdt 祖先的另一次基因复制事件产生的。总之,这些结果揭示了 RND 外排泵的进化,证明了 Mdt 泵的古老起源,并表明核心细菌外排泵库在整个进化过程中总体上是稳定的。
