拨款程序概述 预算基础 州长在立法机关召开会议后 30 天内提交预算(如果州长是新当选的,则为 60 天)。预算必须平衡(收入等于或超过支出)。所需立法(例如,拟议的收入增加)必须与预算一起提交。多年来,预算法案是在轮流的议院中提出。每项具体法案的起草议院历来每年轮流,但资本支出拨款除外,它每两年轮流一次。从 2011-12 财年开始,这一流程发生了巨大变化。现在,每个议院都提出自己的一套拨款法案,并与其他议院同时将这些法案提交立法程序(小组委员会、全体委员会和全体通过)。自 2011-12 财年起,众议院和参议院通常以以下两种方式之一执行各自的预算工作:1) 当众议院的小组委员会处理个别预算时,小组委员会的工作将合并为两个综合预算法案,由众议院的拨款委员会采取行动。一个法案(《州立学校援助法》修正案)包括对学校援助、高等教育和社区学院的拨款。另一项法案(“正常的”一年期预算法案)包括对所有州部门和机构的拨款。或者,2) 众议院通过每个预算领域的单独法案(一般政府预算法案除外,该法案包括对多个州部门、立法机关和行政办公室的拨款)。这些单独的法案由众议院的小组委员会报告给拨款委员会,由其进行审议并报告给众议院。近年来,在参议院和众议院通过各自版本的预算后,每个议院都会“归零”对方的法案(即删除分项拨款和样板文件)。“归零”的法案随后被送回原议院,被该议院否决,并提交协商委员会。在过去十年之前,预算的一半在一个议院开始,另一半在另一个议院开始。两院审议了这些法案,然后交换了它们。当时的协商只关注两院之间的分歧项目。州长和立法领导人协商预算目标金额,众议院和参议院协商人员将根据这些金额制作协商报告。为了在协商委员会中达成决议,分歧项目在意识形态上基于众议院和参议院通过的各自原始预算法案版本,但从技术上讲,由于“归零”预算的过程,所有项目都可以进行谈判
sivakumar_s@cpacollege.org摘要在早期阶段对神经退行性疾病的识别仍然是差异诊断的重要问题。因此,在这项工作的背景下,我们建立了并测试了一种新的生物标志物,用于改善这些疾病的早期诊断。我们根据一百名参与者的样本中的水平,选择了三种特定的生物标志物,即淀粉样蛋白β42,tau蛋白和神经丝链,其中一半是对照组,另一半是神经退行性病例。结果表明,神经退行性组中这些生物标志物的水平高于对照组。验证阶段表明,生物标志物面板特别是面板1(淀粉样蛋白β42和tau蛋白)产生了更好的精度,灵敏度为85%,特异性为90%,AUC为0。93。因此,与传统的诊断程序(包括CSF分析和MRI)相比,该小组被证明更敏感和特异性。此外,针对生物标志物计算的相关性彼此之间相互较高,尤其是淀粉样蛋白42和tau蛋白之间的相互意义。这些结果表明,这个新的生物标志物面板可以大大延长对神经退行性疾病的早期检测和诊断。需要进行更多的研究来在不同和更广泛的样本中复制这些结果,并在临床背景下评估小组。最常见的NDS包括阿尔茨海默氏病(AD),帕金森氏病(PD)和肌萎缩性侧面硬化症(ALS)。关键字:神经退行性疾病,生物标志物面板,淀粉样蛋白-beta 42,tau蛋白,神经丝轻链,诊断方法 *作者通信:电子邮件:srjothisat@gmail.com接收到:收到:12/09/2024接受:14/10/2024/2024 Doi: https://doi.org/10.53555/ajbr.v27i3.3633©2024作者。本文已根据创意共享属性 - 非商业4.0国际许可(CC BY-NC 4.0)的条款发表,该条款允许在任何媒介中不受限制地使用,分发和复制,只要提供以下声明。“本文发表在《非洲生物医学研究杂志》上”引言神经退行性疾病可以描述为影响神经元的一组疾病,从某种意义上说,这些细胞经历了结构或功能改变并最终死亡。他们主要与老年人有关,是导致全球发病率和死亡率的一些主要疾病。
1。执行摘要本文件介绍了成员国对与气候变化间政府间小组(IPCC)第七次评估周期相关的四个关键主题的看法。通过一组四个问题征求了观点,围绕以下主题构建:第七次评估报告(AR7)的结构,考虑到国家温室气体库存工作组(TFI)的额外产品,在第七个评估周期中考虑了其他产品,以及与此周期相关的一般建议。收到了66个成员国的提交,占195个成员国的34%,其中41%的回应是发达国家,有59%的发展中国家和有过渡经济的国家。关于AR7的结构,几乎所有国家都支持三个工作组(WGS)贡献和合成报告(SYR)维持当前格式。提出的一些更改,包括提倡减少报告数量以及更加集中和跨学科格式。其他建议包括时间表,区域平衡和增强的跨工作组(WGS)协作。关于TFI的其他产品,成员国被分割。一半的成员国支持TFI的额外产品,而另一半则没有。与“去除碳”,“捕获和存储技术”有关的主题在拟议领域的额外产品以及专家会议和/或研讨会中获得了最高的支持。也建议了专家会议和讲习班。关于此周期中的其他产品,几乎所有国家都支持其他特别报告,技术论文或方法论报告。在提议的其他产品的主题中,与“临界点”相关的主题获得了最高的支持,其次是气候变化适应,适应目标,适应指标等”和“损失和损害”。一般建议包括一种更广泛的方法,该方法对通过专家会议提出的一些主题限制了特殊报告的数量,重点关注包容性和区域平衡,避免延迟,提高透明度,更有针对性和解决方案的评估,考虑土著观点以及土著观点以及WGS和TFI的协作之间的增长,以及提高TFI的沟通以及IPCC的沟通。2。背景是在2023年7月完成第六个评估周期后,IPCC开始了第七个评估周期。为了告知这些讨论,IPCC执行委员会(EXCOM)在其第117届会议上(Telececterference,2023年10月11日)要求IPCC秘书处向IPCC成员国征集有关第七次评估周期产品的意见,以在IPCC Bureau(Bur-66)之前收集第七次评估周期。
人们通常必须在太复杂的环境中做出决定,无法理解。政策制定者评估其潜在治疗效果的社会计划是异质性,高度非线性或溢出的社会计划。监管机构为复杂的人工智能模型设计规则,而在社会中部署了这些模型,而没有真正知道这些模型的工作方式。对决策者的有用是多么有用,可以理解其环境的解释?在本文中,我们通过考虑决策者(此后DM)的问题来研究这个问题,该决策者遇到了一个太复杂而无法理解的模型,而必须依靠对其进行解释。DM的收益取决于其行动和世界状态,在这些行动和输入中描述了后者。输入遵循已知分布,单个真实模型指定输入和输出之间的关系。例如,这种真实的模型可能是自然界中发生的相关数据生成过程(DGP),或者是由复杂的人工系统(例如大型统计或人工智能(AI)模型)引起的DGP。我们设置的关键新颖特征是,真实模型的空间比DM可以理解的可理解模型的空间大得多。例如,真实模型的空间可能包含所有深神经网络,但是可理解模型的空间可能仅包含n级多项式。要使DM将有关真实模型的信息合并到其选择的选择中,必须首先通过将其映射到可理解的模型来解释真实模型。同样,regu-将重点放在DM中掩盖模型的主要因素上,我们抽象出可能在此解释过程中涉及的任何抽样误差。我们需要遵守两个标准的真实模型空间和可理解模型的空间(我们称为解释器)之间的映射。首先,如果真实模型已经可以理解,则解释器不应用不同的模型来解释它。第二,如果真实模型是由独立于状态的随机设备生成的两个模型的混合物(例如,一个模型持有一半的时间;另一个模型,另一半),则真实模型的解释应该是这两个模型的解释的混合。一起,这些标准等于解释器是对可理解模型空间的真实模型的线性投影。此类包含用于解释模型的大多数工具,包括政策评估中的线性回归和机器学习中的本地近似值。本文的设置捕捉了许多情况,在这些情况下,决策者面对需要解释的符合模型。,例如,决策者经常评估其治疗效果(输出)取决于受影响人群(输入)的人口特征(输入)(真正的模型),而决策者必须选择要实施的程序(行动)。
以下定义是整个文件中使用的关键术语,除非另有说明,它们均基于美国人口普查局的信息:综合许可证 – 根据 MGL c.40B §§20-23 和 760 CMR 56.00,由分区委员会颁发的用于开发低收入或中等收入住房的当地许可证。成本负担 – 住房支出超过其收入 30% 的家庭。残疾 – 美国社区调查将残疾定义为包括听力、视力、认知、行走、自我护理和独立生活方面的困难。家庭 - 家庭是由两个或两个以上的人(其中一个是户主)组成的群体,他们通过出生、婚姻或收养而有血缘关系并共同生活;所有这些人(包括相关的亚家庭成员)都被视为一个家庭的成员。家庭 – 家庭包括有血缘关系的家庭成员和所有无血缘关系的人(如果有),例如房客、寄养儿童、被监护人或共用住房单元的员工。独居在住房单元中的人或合住一个住房单元的无亲属关系的群体(如伴侣或室友)也算作一个家庭。家庭数量不包括集体宿舍。中位年龄 – 将人口分成两个数值相等的组的年龄;也就是说,一半的人小于这个年龄,而另一半的人大于这个年龄。中位收入 – 中位收入是将收入分配分成两个相等的组的数额,一半的收入高于中位收入,一半的收入低于中位收入。家庭、家族和无亲属关系个人的中位值分别基于所有家庭、家族和无亲属关系个人。人的中位值基于 15 岁及以上有收入的人。千禧一代 – X 世代之后的人口群体。这一代人没有确切的开始和结束日期。研究人员和评论员使用的出生年份从 1980 年代初到 2000 年代初不等。 ( en.wikipedia.org/wiki/millennials.) 住房单元 - 住房单元是指房屋、公寓、移动房屋或拖车、一组房间或单个房间,这些房间有人居住,或者如果空置,则旨在作为单独的生活区居住。贫困 - 根据管理和预算办公室 (OMB) 的第 14 号指令,人口普查局使用一组货币收入阈值来检测谁是穷人,这些阈值因家庭规模和构成而异。如果一个家庭的总收入低于该家庭的阈值,那么该家庭及其每个成员都被视为穷人。贫困阈值不会因地域而异,但会根据消费者价格指数 (CPI-U) 每年更新通货膨胀率。官方贫困定义计算税前货币收入,不包括资本收益和非现金福利(如公共住房、医疗补助和食品券)。按年份和家庭规模划分的阈值可在此链接中找到:https://www.census。gov/hhes/www/poverty/data/threshld/。补贴住房清单——由马萨诸塞州住房和社区发展部编制的清单,其中包含每个城市和城镇的低收入和中等收入住房单元数量。
Characterization of the unit - Name: Laboratory of engineering of the Versailles systems - Acronym: Lisv - Label and Number: EA 4048 - Number of teams: Three teams - Composition of the management team: Mr. Éric Monacelli (Director) Scientific Panels of the Panel 1: ST6: ST6: Sciences and Technologies of Information and Communication Panel 2: ST5: Sciences for the thematic engineer该单元是多学科和技术的,结合了理论方法和实验方法。它们涵盖了智能系统及其相互作用领域的广泛范围。在相关评估期开始时,包括2018年至2021年,该单元在两个团队中结构:一方面是“交互式机器人技术(RI)”,另一方面是“高级系统的仪器(ISA)”。2022年1月1日,由RI团队分队创建了第三支团队:“智能和协作的机器人循环系统系统(Symric)”。因此,自那天以来,该单元的结构是几乎相同的三支球队。交互式机器人团队(RI)专门研究人类机器人相互作用的研究和为人类利益而开发评估设备。他的科学主题是对互动的生物力学分析,行为和情感的评估,对人的帮助和流动性的评估,包括主要是对残疾人的人以及命令主题,在阻抗控制类型的特定方法中集成了命令主题。该团队中开发的应用符合社会问题,例如电动矫形器或假体的设计或功能康复。高级系统(ISA)团队的仪器对复杂系统的行为的表征感兴趣,该行为(称为高级系统)结合了机械,电子,光学和控制元素。它的科学主题是建模和多种选择,多尺度建模以及通过光学方式传输信息。在“未来行业”或汽车或太空部门的概念下,该团队中开发的申请主要对工业问题做出响应。团队团队智能和协作机器人系统(SYMRIC)对自我和机器人设备的开发感兴趣。他的科学主题是系统的设计和控制,特别是交互式系统,多物理模拟,知识表示和人工智能。该团队在该团队中开发的应用既应对社会和工业问题,例如互动无人机的设计或改善河流潮汐涡轮机或人形机器人的性能的贡献。LISV部门的历史和地理位置是一个接待团队,EA 4048,位于凡尔赛大学圣昆汀·恩维尔斯大学(UVSQ)本身,本身是在巴黎 - 萨克莱大学集成的。副研究人员是私人高等教育机构(ISEP)的个人。本单元来自2006年的合并,来自三个单元:LIRIS(CNRS-FRE 2508),其研究的重点是机器人技术和纳米技术,LRV(EA 3645)的研究还以机器人技术为中心,以及Lema(CNRS-FRE 2481)的研究,其研究侧重于材料和行为。迄今为止,该单位有23位UVSQ的教师研究人员(EC)和一名副研究人员,其中12名是HDR,还有5名研究支持人员(BY)。UVSQ的EC在CNU的第60和61节中非常高,并且第62、63和27节的范围较小。,他们的一半是依附于Vélizy-Rambouillet的IUT,本身位于两个地点:Vélizy-Villacoublay校园和Rambouillet的校园。对于另一半,它们隶属于位于Mantes-en-Yvelines校园的Mantes的IUT,位于Mantes-en-Yvelines校园的Isty工程学校,或位于Vélizy-Villaclay-Villaclay校园的UFF Sciences的校园。
Phelan-McDermid综合征:22Q13删除22q13缺失是由染色体22的一块遗传信息引起的罕见遗传疾病。与许多其他遗传疾病一样,缺失的染色体会增加出现发展延迟,医疗问题以及学习和行为困难的风险。每个人的影响如何变化很大。染色体由DNA制成,它们位于我们体内的细胞中,并包含我们的遗传信息(基因)。通常每个细胞都有23对染色体,因此总共46对。这些染色体的一半来自母亲,另一半来自父亲。染色体的编号为1至22,主要是基于其长度。此外,还有一些性染色体可以确定某人是遗传上的男孩还是女孩(女孩有两个X染色体(XX),男孩有X和A Y染色体(XY)。每个染色体都有一个短臂(P)和一个长臂(Q)。在2013年第22季度的缺失中,一个22染色体完好无损,另一个染色体22染色体缺失了长Q臂的一部分。缺失部分的大小在个人之间有所不同。删除量通常在男孩和女孩中同样发生。1985年在医学期刊上发布了22q13删除儿童的第一个描述。名称“ Phelan-Mcdermid综合征”是指最初描述条件的人们:Katy Phelan和Heather McDermid。在荷兰,据估计,菲兰 - 麦克氏综合征大约有30,000分之一。这可能是一种低估的,因为诊断通常是在以后的生活中进行的。尽管有22q13删除的人之间存在差异,但也有相似之处。这称为综合征,因此术语是Phelan-Mcdermid综合征或22q13缺失综合征或更准确的22q13.3缺失综合征(Watt 1985; Phelan 1992;独特)。看着22Q染色体看不到肉眼,但是当它们在显微镜下染色和放大时,可以看出,每个染色体都具有明显的光和黑暗带模式。通过以这种方式看染色体,可以看到染色体破碎的点(或点),并且大致缺少了多少遗传物质。但是,这种经典的染色体分析无法识别出很小的删除,并且当多年前使用非常小的删除的人很可能仍然无法诊断。据报道,超过30%的菲兰 - 麦克氏综合症患者需要两次或多个染色体研究才能识别其缺失。部分出于这个原因,当然有人,尤其是如果他们很久以前进行了基因测试,其中22q13删除尚未被诊断出来。如今,使用了更敏感的技术(例如 SNP数组),能够检测到较小的删除。 在Phelan-Mcdermid综合征中,缺少22号染色体的长(Q)臂的一部分。如今,使用了更敏感的技术(例如SNP数组),能够检测到较小的删除。在Phelan-Mcdermid综合征中,缺少22号染色体的长(Q)臂的一部分。This may be a pure deletion and no other chromosome is involved (this has been found in about 80% of people), or it may be accompanied by a loss or gain of genetic material, following an exchange between chromosome 22 and another chromosome (this has been found in about 10% of people), or a ring chromosome may have formed (where part of the long arm and the short arm of chromosome 22 is lost and the two ends join together to form a戒指;大约有10%的人发现了这一点。
癫痫的科学摘要药物治疗仍然非抑制作用,大约三分之一的患者在医学上是难治性的。有效疗法的开发需要新颖的实验系统来建模癫痫发育。一个非常有前途的新平台是人类脑器官(或简单的器官),即3D培养物,其中由人类胚胎或诱导多能干细胞(HESC或HIPSC)产生特定的脑样结构。类器官概括了人脑的许多结构特征,并为各种神经系统疾病提供了独特的见解。我们生成了“融合”器官结构,其中兴奋性神经元促进性皮层(CX)和抑制性神经元间的神经节启动(GE)种群整合了整合,从而产生了建模神经回路组装和癫痫发育的理想平台。使用这种技术,我发现hESC衍生的融合器可以在包括复杂振荡(复杂的振荡)中显示内神经元间调节的自发神经网络活动。我进行的单细胞RNA测序表明,融合对于中间神经元细胞的存活也至关重要,因为未使用的GE类器官显示出年龄增加的中间神经元簇的逐渐丧失,与融合不同。i还表明,来自RETT综合征患者的HIPSC衍生的融合器官,一种与癫痫高度相关的遗传疾病,具有癫痫样活性和网络振荡的变化,而网络振荡与同基因控制器可以改变。我通过用抗塞氏剂药物丙戊酸钠或p53抑制剂pifithrin-α治疗来挽救了其中一些异常。这些数据表明,融合器官模型增强了中间神经元的生存,体外概括了与癫痫相关的异常,并为治疗验证和发现提供了新的平台。基于这些数据和最新的初步发现,我建议扩展这种方法,以模拟大脑区域特定细胞变化以及严重发育和癫痫性脑病(DEE)的生理表型。i最近从SCN8A基因中具有癫痫相关突变的患者中产生了融合CX+GE和海马+GE(H+GE)类器官。scn8a编码电压门控钠通道Na V 1.6和SCN8A中功能突变的增益导致毁灭性的DEE,称为早期婴儿癫痫性癫痫性脑病13(EIEE13)。胎儿癫痫发作的报道使脑器官特别适合模型EIEE13。我的初步数据提出了高度过度过度的表型,其特征是SCN8A突变体CX+GE GE融合体中活机体两种光子成像和高振幅局部场电位(LFPS)的突发性。有趣的是,SCN8A突变体H+GE融合并没有显示出相同的过度表现表型,而是缺乏锋利的波浪波纹(SWR)振荡。SWR被认为是与海马记忆巩固相关的间神经元依赖性振荡。基于这些数据,我假设SCN8A突变体脑过度刺激性是由皮质兴奋性神经元驱动的,而海马中的SCN8A突变导致SWR振荡活性中的间神经元依赖性缺陷。目标1:确定scn8a突变体性过度刺激性表型中GE衍生的抑制性抑制作用与CX衍生的兴奋性神经元的作用。假设CX兴奋性神经元中SCN8A GOF突变引起的皮质兴奋性将通过对“未粘合”与“混合”融合的钙成像和LFP记录进行测试。在混合融合中,CX或GE将是SCN8A突变体,另一半将是无突出的。目标2:确定地球衍生的抑制性中间神经元在海马锋利波浪波动中的作用。假设SCN8A GOF突变仅限于GE衍生的中间神经元将足以消除H+GE融合器官中的SWR振荡,将通过在AIM 1。在利用新兴,有前途和人类细胞的技术来模拟癫痫病时,该提案有可能提供对癫痫病理生理学的开创性见解。此外,这些研究还集中在EIEE13的病理生理变化上,这与治疗癫痫的治疗任务一致。使用癫痫患者IPSC衍生的类器官,其潜力用于个性化和特定于患者的疾病建模,与以患者为中心的护理的治愈任务保持一致。
应汤加政府的要求,气候技术中心和网络与能源部密切合作,制定了汤加能源效率总体规划 (TEEMP),供汤加相关实体调整和采用。该计划基于对现有框架、计划、方案和项目的研究;广泛的利益相关者协商;以及数据开发和分析。TEEMP 涵盖电力使用和地面运输。TEEMP 是对 2009 年汤加能源路线图 2010-2020 (TERM) 方法的补充。TERM 致力于通过提高能源效率和改善供应链来降低汤加对化石燃料的依赖,以减少进口产品的价格波动,从而减少温室气体 (GHG) 排放并提高国家能源安全。汤加温室气体排放的基线评估基于汤加的国家自主贡献 (INDC),其中确定的主要排放部门为交通运输 (40%)、发电 (23%)、农业 (21%)、废物 (11%) 和其他能源 (5%)。TEEMP 处理了这些温室气体总量的 55%:发电 (23%) 和地面交通 (32%)。桑基分析确定了建筑用电和交通运输按燃料类型划分的能源流。大约一半的柴油消耗用于交通运输,另一半用于建筑用电发电(主要是住宅和商业部门的空间冷却、照明和电器)。其余的交通燃料是汽油。截至 2017 年,汤加最大岛屿汤加塔布岛的总装机容量为 17.8 兆瓦 (MW),其中 14 MW 为常规柴油发电机组容量,2.3 MW 为光伏发电,0.5 MW 为风能发电,以及 1 MW 的电池储能系统。这一装机容量较 2012 年有所增加,当时汤加塔布岛的常规容量为 12.6 MW,可再生能源容量为 1.3 MW。装机容量的增长归因于政府领导部署更多的可再生能源发电,以及电力负荷的增加,主要由于电器拥有量的增加。汤加电力有限公司 (TPL) 是一家垂直整合的公用事业公司,拥有并运营着汤加大部分电表前发电以及输配电 (T&D) 资产。电价对激励或抑制能源效率投资具有重要影响。尽管发电成本存在差异,但四个主要岛屿的 TPL 电价是统一的,截至 2018 年 2 月,电价定为每千瓦时 (kWh) 0.8514 汤加潘加 (TOP)。此外,每月前 100 千瓦时的用电量还有一项补贴“生命线电价”,即 0.7 TOP,适用于所有客户。鉴于汤加大部分电力来自柴油,电价对燃料成本的波动很敏感。汤加估计的能源强度为每美元 (USD) 人均 GDP 进口燃料 216.8 千兆焦耳 (GJ),在一切如常 (BAU) 情景下到 2030 年将上升到 259.8 GJ。2017 年,住宅部门占电力消费的 44%,商业、宗教、政府和公共服务部门占剩余的 56%。TERM 表明,与 2010 年的水平相比,到 2020 年能源消费预计增长 28%。估计的交通基线是 2016 年汤加的住宅、商业和政府用途超过 16,000 辆车辆。大多数车辆是汽车(6,031 辆)或轻型卡车/厢式货车/SUV(7,103 辆)。重型车辆、出租车和租车、摩托车和公共汽车占剩余的 3,690 辆。 2016 年,每人目前的平均车辆行驶里程估计为 2,289 公里,预计到 2050 年将增长到 5,103 公里,与预期的 GDP 增长保持一致。确定的交通运输关键政策选项包括旨在提高燃油经济性的车辆进口关税或登记费;限制重型车辆 (HDV) 的怠速时间;10% 的生物柴油混合物;部署电动汽车;以及通过方便行人、骑自行车者、拼车者和公共汽车乘客来减少车辆行驶里程的政策。交通运输部门的这些能源使用减少将导致温室气体到 2030 年比正常水平减少 28%,比 2018 年基线增加 1%。在建筑领域,汤加的电力消耗受建筑设计、电器使用和能源消耗行为的影响。鉴于汤加的热带气候,商业、政府和非政府建筑中通过使用空调进行降温的情况非常普遍,而且这种现象还在增加。可能有机会重新采用历史建筑的设计实践,例如被动通风和大型悬垂结构以提供遮阳。建筑领域的主要能源使用减少方案围绕增加可再生能源的部署、减少实施最低能源性能标准 (MEP)、改进出租车和租车、摩托车和公共汽车占剩余的 3,690 辆车。目前,2016 年人均车辆行驶里程估计为 2,289 公里,预计到 2050 年将增长到 5,103 公里,与预期的 GDP 增长同步。确定的交通运输关键政策选项包括旨在提高燃油经济性的车辆进口关税或登记费;限制重型车辆 (HDV) 的怠速时间;10% 的生物柴油混合物;部署电动汽车;以及通过方便行人、骑自行车者、拼车者和公共汽车乘客来减少车辆行驶里程的政策。交通运输部门的这些能源使用减少将导致温室气体到 2030 年比正常水平减少 28%,比 2018 年基线增加 1%。在建筑领域,汤加的电力消耗受建筑设计、电器使用和能源消耗行为驱动。鉴于汤加的热带气候,商业、政府和非政府建筑使用空调降温的做法十分普遍,而且使用量还在不断增加。可能有机会重新采用历史建筑的设计实践,例如被动通风和大型悬垂结构以提供遮阳。建筑领域的主要能源使用减少方案集中在增加可再生能源的部署、减少实施最低能源性能标准 (MEP) 以及改进出租车和租车、摩托车和公共汽车占剩余的 3,690 辆车。目前,2016 年人均车辆行驶里程估计为 2,289 公里,预计到 2050 年将增长到 5,103 公里,与预期的 GDP 增长同步。确定的交通运输关键政策选项包括旨在提高燃油经济性的车辆进口关税或登记费;限制重型车辆 (HDV) 的怠速时间;10% 的生物柴油混合物;部署电动汽车;以及通过方便行人、骑自行车者、拼车者和公共汽车乘客来减少车辆行驶里程的政策。交通运输部门的这些能源使用减少将导致温室气体到 2030 年比正常水平减少 28%,比 2018 年基线增加 1%。在建筑领域,汤加的电力消耗受建筑设计、电器使用和能源消耗行为驱动。鉴于汤加的热带气候,商业、政府和非政府建筑使用空调降温的做法十分普遍,而且使用量还在不断增加。可能有机会重新采用历史建筑的设计实践,例如被动通风和大型悬垂结构以提供遮阳。建筑领域的主要能源使用减少方案集中在增加可再生能源的部署、减少实施最低能源性能标准 (MEP) 以及改进实施最低能源性能标准 (MEP) 的减排措施、改进实施最低能源性能标准 (MEP) 的减排措施、改进
物理定律被蚀刻到对称的画布上,定义了动态系统中的不变模式。但是,当对称性破碎时,基本定律也是如此,通常会导致戏剧性的转变。大爆炸是一个很好的例子,在该例子中,高度对称的状态被称为“假真空”,突然过渡到了一个较低的对称性之一,释放了一种通货膨胀的级联,该级联伴随着我们的宇宙。在早期的宇宙中,极端的热量和能量导致所有力融合到一个实体中 - 由最高对称性的统一拉格朗日描述,但理论上的物理学家完全掌握了。随着宇宙的扩展和冷却,这种对称性被打破,将统一的力分成两个不同的组(重力和电核)。随后的冷却导致对称性进一步崩溃,随着电核力量分为强大的核力量和电能力量,标准模型的Lagrangian失去了更多的对称性。最终,在大爆炸之后的一秒钟仅一秒钟,宇宙就足够冷却了,以使统一的电子周力粉碎到电磁力和弱核力量中。在每个阶段,都会发生自发对称性破裂,从而导致物理不变,并出现新的行为。物理学家长期以来一直研究了自发对称性破坏的现象,范围从结晶和相变到诸如Yoichiro Nambu提出的下原子模型等例子,他们在2008年获得了这一概念的诺贝尔物理学奖。新的平衡位置随着箍旋转的速度而出现。结晶发生时,当温度降低时,具有高平均局部对称性的分子的流体会突然过渡,从而在相对位置施加了较低对称的限制并导致有序的晶体结构。即使是固体晶体也可以经历相变,因为一个对称性比另一种对称性在能量上更有利,从而导致其结构变化。在力学中,用参数缓慢进化的潜在函数可以从一个对称开始,并过渡到另一个较低的对称性,可能导致由该功能控制的机械系统的行为不连续变化。在复杂的系统和混乱理论中,当某些参数不断变化时,行为突然的转移很常见,导致分叉 - 对控制参数的持续变化而发生的突然变化。分叉以各种形式出现,每个形式都带有描述性名称,例如干草叉,倍增,霍普夫和折叠分叉。干草叉分叉是一个模范的情况,随着参数的连续变化(水平轴),稳定的固定点变得不稳定,从而产生了两个新的稳定固定点,同时 - 类似于三个衬托的干草叉的形状(超级挑剔的干草店双面双面双面双面双面布置)。可以在简单的机械模型中观察到这种确切的现象,这些模型说明了...当稳定的固定点突然分成多个固定点,一个不稳定,而其他稳定的稳定点时,就会发生对称性破裂。一个简单的机械模型显示此现象是在旋转圆圈上滑动的珠子。该概念也与Coleman-Weinberg的潜力有关。当箍缓慢旋转时,珠子在其底部的平衡周围振荡;但是,随着离心力更快,它会导致珠子摆动到一侧或另一侧,从而产生两个新的稳定固定点。当自旋速率超过临界阈值时,会发生过渡,从而导致自发对称性断裂和干草叉分叉。通过整合角加速度,我们可以获得系统的有效潜力,该系统自然会随着自旋速率的增加而表现出干草叉分叉。当干草叉的底部处于平衡状态时,振荡的固有频率基本平坦,频率为零。以下一定的过渡阈值,扩展加速度表达式揭示了固有频率。随着有效电势会变得更平整,自然振荡频率会降低,直到其在过渡自旋频率下消失为止。要找到这些新频率,请在新的平衡点附近扩展θ,这是一个谐波振荡器,具有角度频率,可以上升以匹配箍的自旋速率。这个过程与经历相变的铁电晶体中的自发对称性破裂相似。自发对称性破坏是一个过程,其中对称态的系统自发过渡到不对称状态。可以在运动方程或拉格朗日表现出对称性的系统中观察到这种现象,但是最低的能量真空溶液没有。当系统塌陷成这些真空溶液之一时,即使整个拉格朗日保留了对称性,对称性也会破坏该真空周围的扰动。自发对称性破坏需要在对称转换(例如翻译或旋转)下保持不变的物理定律。例如,如果在两个不同位置处的测量值具有相同的概率分布,则可观察到的可观察到的转换对称性。在自发的对称性破坏中,这种关系被破坏了,而潜在的物理定律保持对称。相反,当考虑具有不同概率分布的结果时,就会发生显式对称性破坏。缺乏旋转对称性的电场的引入明确打破了旋转对称性。的阶段,例如晶体和磁铁,可以通过自发对称性破坏来描述,但值得注意的例外包括拓扑阶段,例如分数量子霍尔效应。通常,当自发对称性破裂发生时,多个可观察的特性会同时改变。例如,当液体变为固体时,密度,可压缩性,热膨胀系数和比热可能会发生变化。考虑一个向上的圆顶,底部有一个槽。如果将球放在峰值上,则系统在其中心轴旋转下是对称的。但是,球可以通过滚入槽(最低能量点)来自发打破这种对称性。圆顶和球保留了他们的对称性,但是系统不再具有对称性。在理想化的相对论模型中,可以通过说明性标量场理论总结自发对称性破坏。相关的Lagrangian分为动力学和潜在术语:l = ∂μx∂μϕ -V(ϕ)。在这个潜在的术语中,对称性破裂发生。由Jeffrey Goldstone引起的潜力的一个示例由V(ϕ)= -5 | ϕ |^2 + | ϕ |^4给出。对于0和2π之间的任何真实θ,该电位具有由ϕ =√(5/2)E^(iθ)给出的无限数量的最小值(真空状态)。该系统还具有与φ= 0相对应的不稳定真空状态,该状态具有u(1)对称性。系统落入特定的稳定真空状态(构成θ的选择)后,该对称性似乎会丢失或“自发损坏”。该理论的基态打破了对称性,表明无质量的Nambu -Goldstone玻色子,代表了Lagrangian中原始对称性的记忆。[6] [7]对于铁磁材料,空间旋转是不变的。在居里温度下方,磁化点朝着一定方向,使残留的旋转对称性不间断。描述固体的定律在欧几里得组下是不变的,但由于位移和方向顺序参数,自发分解为空间组。一般相对论的洛伦兹对称性被FRW宇宙学模型中的平均4速度场打破了,类似于宇宙微波背景。电动模型在其温度下经历了相变,在该温度下,希格斯字段充当阶参数破坏量规对称性。超导体的集体场ψ可以打破电磁量规对称性。最初在旋转下最初对称的薄塑料杆在屈曲后变为不对称,但通过其旋转模式保留了圆柱对称性的特征,代表Nambu -Goldstone Boson。(1967)。无限平面上的均匀流体层的对称性是由于温度梯度而形成的对流。旋转圆形箍上的珠子最初将保持静止,但是随着旋转速度的增加,它将开始沿特定方向移动,说明了各种物理系统中对称性的自发破坏。在旋转箍的底部,有一个平衡点,重力电势是稳定的。随着箍旋转的速度,这一点变得不稳定,珠子跳到了中心两侧的两个新均衡之一。最初,系统是对称的,但是在传递临界速度之后,珠子沉降到这些新点之一,打破了对称性。两个气球实验表明,当两个气球最初均等地膨胀时,自发对称性破裂,然后随着空气从一个流向另一个气流而放气。在粒子物理学中,量规对称性预测,某些测量值在田间的任何位置都相同。例如,方程可能预测相等的夸克质量。但是,求解这些方程可以产生不同的解决方案,反映出对称性的崩溃。这种现象称为自发对称性破坏(SSB)。早期宇宙的不同区域的对称性可能有所不同,导致拓扑缺陷如域壁和宇宙弦。自发对称性破坏可以通过产生不必要的单脚架来为大统一理论(肠道)带来挑战。手性对称性破坏是SSB影响粒子物理中强相互作用的一个例子。量子染色体动力学的这种特性解释了核子和常见物质中的大部分质量,将光夸克转化为较重的成分。在此过程中,亲尼是近似的Nambu-Goldstone玻色子,其质量比核子的质量轻得多。手性对称性破裂是希格斯机构的原型,这是电动对称性破坏的基础。希格斯机制和自发对称性断裂是错综复杂的,特别是在仪表对称的领域,这实际上代表了描述对称性的冗余。这个概念在理解金属的超导性和粒子物理标准模型中粒子的起源方面起着至关重要的作用。然而,必须注意,由于Elitzur的定理指出,“自发对称性破坏”一词在某种程度上具有误导性。相反,在应用量规固定后,可以以类似于自发对称性破坏的方式破坏全局对称性。区分真实对称性和规格对称性的一个重要结果是,由于量规对称性的自发断裂对量规矢量场的描述,导致无质量的NAMBU-GOLDSTONE玻色子吸收。此过程提供了巨大的矢量场模式,类似于超导体中或在粒子物理学中观察到的媒介模式。在粒子物理的标准模型中,SU(2)×u(1)与电脉力相关的su(2)×u(1)仪表对称性的自发对称性破坏会为各种粒子产生质量,并区分电磁和弱力和弱力。W和Z玻色子是介导弱相互作用的基本颗粒,而光子介导电磁相互作用。在100 GEV以上的能量下,所有这些颗粒的行为都类似。然而,根据温伯格 - 萨拉姆理论,在较低的能量下,这种对称性被损坏,因此光子和巨大的W和z玻璃体出现。此外,费米子始终如一地发展质量。没有自发的对称性破坏,基本粒子相互作用的标准模型必须存在几个颗粒,但是某些粒子(W和Z玻璃体)然后将被预测是无质量的,与观察到的质量相矛盾。为解决这一点,希格斯机制增强了自发对称性破裂,以使这些颗粒质量质量。这也表明存在一个新粒子Higgs Boson,该粒子在2012年被检测到。金属中的超导性用作Higgs现象的凝结物类似物,其中一组电子对电子对自发打破了与光和电磁相关的U(1)量规对称性。动态对称性破坏(DSB)代表一种自发对称性破坏的一种特殊形式,与其理论描述相比,系统的基态具有降低对称性的特性。全局对称性的动态破坏是由于量子校正而不是在经典树级别而发生的一种自发对称性破坏。然而,动态规格对称性破裂更为复杂,不涉及不稳定的希格斯粒子,而是涉及系统的结合状态,提供了促进相变的不稳定场。物理学家Hill和Lindner发表了研究,该研究通过使用由顶式夸克制成的复合粒子探索了标准希格斯机制的替代方法。这个概念是复合HigGS模型的一部分,其中复合粒子充当希格斯玻色子。动态破裂通常与诸如夸克冷凝物等费米子冷凝物有关,而在超导性中,声子促进了对成对结合的电子,从而导致电磁仪表对称性破坏。大多数阶段可以通过自发的对称性破裂来解释,就像在所有翻译或磁体下都不是在特定方向方向取向的磁体的晶体。其他示例包括列液晶和拓扑排序的状态,例如分数量子厅液体。但是,也已知无法通过自发对称性破裂描述的系统,包括拓扑秩和自旋液体。这些状态保留了初始对称性,但具有不同的特征。铁磁性是自发对称性断裂的主要例子,在一定温度下,能量在磁化倒置下保持不变,但随着外部磁场接近零,能量会破裂。自发对称性阶段的特征是阶参数描述了打破所考虑的对称性的数量。这种崩溃不可避免地伴随着与阶参数的缓慢,长波长波动相关的无间隙nambu-goldstone模式,例如晶体中的声子或磁体中的自旋波。在一维系统中,发生对称性破坏。根据Mermin和Wagner的定理的说法,这些无质量的金石模式在恒定的速度下传播,并在有限温度下被热波动破坏。量子波动防止在零温度下的一维系统中大多数类型的连续对称性破裂,除了其顺序参数保守且没有量子波动的铁磁体。其他远程相互作用系统可能会破坏翻译和旋转对称性。对称的哈密顿量导致无限体积极限的手性构型破坏了镜面对称性。自发对称性破坏需要一个具有多种可能结果的系统,在采样时,它们是整体对称的,但在整体上是对称的,但在采样时会产生特定的不对称状态。这种“隐藏的对称性”具有至关重要的形式后果,并且与金石玻色子有关。在具有对称对称组的理论中,当组的一个元素不同而没有指定哪个成员时,就会发生自发对称性破裂。顺序参数概念是物理理论中的关键,其中对称性下的期望值不变表示有序的相位和断裂的对称性。除非涉及希格斯机制,否则这可能会导致无质量的金石玻色子。在1964年,物理学家Yoichiro Nambu和Makoto Kobayashi因其在亚原子物理学和对称性破坏方面的工作而获得了诺贝尔物理奖的一半。他们的发现揭示了强烈的相互作用如何打破对称结构,从而导致粒子(例如夸克和胶子)的产生。研究论文,例如Chen等。(2010)和Kohlstedt等。(2010)和Kohlstedt等。奖项的另一半因发现CP(指控和平等)对称性在薄弱的互动中被授予Toshihide Maskawa。这一发现对我们对粒子物理学的理解有影响,尤其是与希格斯机制有关。对称性破裂是物理学中的一个基本概念,描述了某些对称性如何在不同的物理系统中丢失或扭曲。它已经在各个领域进行了广泛的研究,包括量子力学,冷凝物质物理学和宇宙学。研究人员探索了对称性破坏了各种机制,例如自催化反应,灾难理论,手性对称性破坏和HIGGS机制。这些理论旨在解释对称性如何在不同的情况下破裂或扭曲,从而阐明了自然的基本定律。近年来,研究人员继续探索对称破坏的概念,并研究了诸如大统一理论,量规重力理论和宇宙弦之类的主题。对对称性破裂的研究仍然是研究的活跃领域,其驱动到其潜力揭示了对宇宙基础结构的新见解的潜力。在包括物理学在内的各个科学社区中,已经对自发对称性破坏的概念进行了广泛的研究。(2007)分别探讨了其对量子纠缠和手性的影响。诺贝尔物理学奖2008颁发给对该领域做出重大贡献的研究人员。史蒂文·温伯格(Steven Weinberg)等学者在诸如Cern Courier等出版物中的意义反映了其重要性。Englert-Brout-Higgs-Guralnik-Hagen-Kibble机制是自发对称性破坏的基本概念,该概念是Guralnik等人最初引入的。该理论已被广泛应用于量规理论,并且是众多研究的主题,包括在《国际现代物理学杂志》中发表的A.自发对称性破坏对我们对宇宙的理解具有深远的影响,其研究仍然是一个积极的研究领域。