摘要:该论文通过“量子信息”的概念解释了“可分离的复合物希尔伯特空间中的操作员”(在“经典”量子力学中定义为“数量”)的概念。就波函数而言,对于要测量的一定数量的所有可能值的概率(密度)分布的特征函数,量子力学中数量的定义是指概率(密度)分布的任何单一变化。可以将其表示为“统一” Qubits的特定情况。任何量子位的相反解释是指某个物理数量,这意味着它的概括性既不是统一的,也不是保存能量。他们的身体意义,宽松地说,包括交换时间时刻,因此在时空“屏幕”中实现。“暗物质”和“暗能量”可以通过“数量”的相同概括为非热门操作员的相同概括,其次仅在伪里曼尼亚人的时空“屏幕”上,根据爱因斯坦的“马赫的原理”和他的野外方程式。关键词:质量,数量,量子信息,Qubit Hilbert空间,时空
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 μ m 的六边形像素矩阵,由低噪声和非常快速的 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用同一原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。
在这项工作的第一部分中,首次使用超冷钙原子 (12 µ K) 实现了 657 nm 的光学钙频率标准,并使用目前不确定性最低的频率梳发生器创建了过渡频率在 1 , 2 · 10 − 14 的世界中确定。以前对频率标准不确定性的重要贡献已降低。通过使用超低原子,多普勒效应的影响可以降低至1 Hz。通过改善激光系统并优化淬火冷却,达到了高达4·10 10 cm -3的集合密度。结合使用状态选择性检测方案对频移进行更灵敏的检测,可以将冲击对不确定性的影响降低到 0 . 3 · 10 − 16 。 。使用光缔合光谱对碰撞进行进一步研究,将基态散射长度的可能值限制在 50 a 0 到 300 a 0 的区间。首次对用于查询时钟转换的激光脉冲中激光相位随时间变化而产生的频移进行了定量检查和校正。
量子力学的物理定律为当今的计算机处理信息提供了一种替代方法。传统计算机使用位(0 或 1)作为构建块,而量子计算机则使用量子位或量子比特,它们可以同时是 |0⟩ 和 |1⟩ 的组合。图 1 中的布洛赫球面表面最能描述一个量子比特可以采用的可能值谱。位允许两个离散值,而量子比特可以将一个点存储在二维连续体(球面)中。量子计算可以利用这些更强大的量子比特,不仅对确定值 |0⟩ 或 |1⟩ 执行运算,还可以同时对所有可能的叠加执行运算。因此,量子计算在选定任务方面比二进制计算具有效率优势。只有在具有适当的量子计算机硬件的情况下,某些任务才会因这种效率提升而变得可行。总之,对于某些问题,量子计算机比传统计算机具有速度优势,因此可以执行当前传统计算机无法执行的计算类型。
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 𝜇 m 的六边形像素矩阵,由低噪声和超快的 SiGe HBT 前端电子设备读出。使用厚度为 50 𝜇 m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用相同原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。
本文档反映了全球恐怖主义数据库 TM 的收集和编码规则。GTD 是一个事件级数据库,包含自 1970 年以来在世界各地发生的 200,000 多起恐怖袭击记录。它由马里兰大学的国家恐怖主义和应对恐怖主义研究联合会 (START) 维护。本代码簿描述了 GTD 的方法、纳入标准和变量。GTD 研究团队定期更新代码簿;主要更改记录如下。本代码簿分为两大领域。首先,本介绍解释了 GTD 的起源、其数据收集方法和一般原则。我们的目标是尽可能透明地说明数据库的生成方式,并致力于创建高度全面和一致的恐怖袭击数据集。我们描述了 GTD 对恐怖主义的定义、纳入标准和其他定义过滤机制,以及当前的数据收集方法。其次,代码簿概述了构成 GTD 的变量并定义了变量的可能值。这些类别包括 GTD ID、事件日期、事件地点、事件信息、攻击信息、目标/受害者信息、肇事者信息、肇事者统计数据、责任声明、武器信息、伤亡信息、后果、绑架/劫持人质信息、附加信息和来源
用于流动可视化的粒子由两个摄像机记录,从而整个测量体积被连续照亮。将摄像机的照明时间设置为最大可能值(约 1/帧速率),从而生成一系列图像,其中移动粒子创建复合段的连续路径。利用来自两个摄像机的粒子轨迹,重建三维粒子轨迹。为了改善弱对比度,从当前图像中减去参考图像,然后对图像进行滤波以抑制噪声,并用阈值算子进行分割。路径段是根据路径连续的事实来识别的,即每个后续段必须准确地位于前一个图像中同一段结束的位置。提取已识别线段的端点,并针对镜头和 CCD 芯片造成的失真校正线段的边缘像素坐标。一旦找不到所讨论路径的新段,就用三次样条函数来近似路径的中心线。根据应用于端点的极线条件确定两个摄像机的相应路径。找到两条对应路径后,在三维空间中逐点重建粒子轨迹。使用三维三次样条函数描述粒子轨迹。根据片段长度和曝光时间可以计算出粒子速度。为了获取有关粒子轨迹形状的信息,附加
使用两个摄像机记录流动可视化的粒子,从而连续照亮整个测量体积。摄像机的照明时间被设置为最大可能值(约 1/帧速率),从而产生一系列图像,其中移动粒子创建复合段的连续路径。利用两个摄像机的粒子轨迹,重建三维粒子轨迹。为了改善弱对比度,从当前图像中减去参考图像,然后对图像进行滤波以抑制噪声,并用阈值算子进行分割。路径段是根据路径连续的事实来识别的,也就是说,每个后续段都必须准确地在前一个图像中同一段结束的位置找到。提取已识别线段的端点,并针对镜头和 CCD 芯片造成的失真校正线段的边缘像素坐标。一旦找不到所讨论路径的新段,就用三次样条函数来近似路径的中心线。根据应用于端点的极线条件确定两个摄像机的相应路径。找到两条对应路径后,在三维空间中逐点重建粒子轨迹。采用三维三次样条函数描述粒子轨迹。可以根据段长度和曝光时间计算出粒子速度。为了获得有关粒子轨迹形状的信息,需要额外的
我们提供了一种新方法,用于在给定的地理数据集中检测多边形组并为每个组计算代表性多边形。此任务与MAP概括相关,其目的是从给定的地图中得出较少详细的地图。按照经典的方法,我们通过将输入多边形与一组三角形合并,从一个约束的Delaunay三角剖分中选择输入多边形,来定义输出多边形。我们方法的创新是通过解决双晶格优化问题来计算三角形的选择。一方面,我们旨在最大程度地减少输出多边形的总面积,但另一方面,我们的目的是最大程度地减少其总周长。我们将这两个目标结合在一起,并研究自然出现的两个计算问题。在第一个问题中,平衡两个目标的参数是固定的,目的是计算单个最佳解决方案。在第二个问题中,目的是为参数的每个可能值计算包含最佳解决方案的集合。我们基于计算适当定义的图表的最小切割而提出了这些问题的有效算法。此外,我们展示了如何使用几乎没有解决方案近似第二个问题的结果集。在实验评估中,我们最终表明该方法能够从与参考解决方案相似的足迹中得出结算区域。
测量被困的(remanent)磁矩M陷阱(H),当在超导导向过渡温度下方冷却下方的小磁场H之后,在零磁场中冷却后,在冷却后上下倾斜磁场时,将磁场上下倾斜时,在困难的小样本中提供了相关的液态,并在零磁场中提供了很大的益处。 (UHTS)。直到最近,由于所涉及的物理学的简单性,对于众所周知的临界状态模型,还不需要在被困的磁通量上单独的纸张。但是,最近的出版物表明需要进行这种分析。本说明总结了具有恒定临界电流密度的Bean模型的期望,并且具有与场相关的临界电流的KIM模型。表明,如果将被困的力矩拟合到功率定律,m trap ∝hα,则固定指数α= 2对于bean模型来说是精确的,而KIM模型显示了可能值的很大的间隔,2≤α≤4。此外,考虑可逆磁化的考虑将可能的指数的范围扩展到1≤α≤4。此外,撤电因子至关重要,并且即使在各向同性材料中也使捕获的力矩方向取决于。作为一种具体的应用,可以通过这种广义方法很好地描述了在H 3 S UHTS化合物上进行的通量捕获实验,从而对II型在超高压力下H 3 s的超导性质提供了进一步的支持。