随着人们对可持续性的关注度不断提高,对易于拆卸和重复使用的产品的需求也随之增加。最初设计用于粘合的粘合剂现在面临着选择性去除的需求,从而实现各行业的快速组装拆卸和高效维护。这种需求在显示器行业尤为明显,因为可折叠设备的兴起需要专门的粘合剂。本文介绍了一种用于可折叠显示器的新型光学透明粘合剂 (OCA),具有独特的紫外线刺激选择性去除功能。该方法将二苯甲酮衍生物掺入聚合物网络中,便于在紫外线照射下快速脱粘。该方法的一个关键特点是巧妙地利用可见光驱动的自由基聚合来制造 OCA 薄膜。该方法与各种单体表现出显著的兼容性,并对二苯甲酮表现出正交反应性,使其成为大规模生产的理想选择。所得 OCA 不仅具有高透明度和均衡的弹性,以及出色的抗反复折叠性,而且在暴露于紫外线照射时还表现出显著降低的粘附性。通过将这种定制配方与战略性集成的紫外线响应元素相结合,我们提供了一种有效的解决方案,可提高可持续电子产品和显示器这一快速发展的领域的制造效率和产品可靠性。这项研究还有助于环保设备制造,满足新兴技术需求。
化学浴沉积(CBD)用于在玻璃基板上生长ZnO纳米棒。种植的Zno纳米棒被浸入含铜三水合物中[Cu(no 3)2 .3 H 2 O]在90℃的溶液30分钟,然后在400°C下在400℃退火1 h,以将Cu 2 +离子转换为CU 2 +离子以Cuo Nanoparticles转换为Zno/coopompompompompots,并形成Zno/Cuopompomps shiocompompssip。从田间发射扫描电子显微镜(FESEM)获得的图像表明,ZnO结构由Cuo纳米颗粒中涂层的纳米棒组成。ZnO NRS和ZnO/CuO纳米复合材料的光吸收均被强烈边缘,能量间隙分别为3.26和3.21 eV。在不同的pH条件下,在室温下研究了制成的ZnO NRS和ZnO/CuO纳米复合材料薄膜针对尖脂素染料的光降解速率。通过增加暴露于溶液的光和/或pH的时间来增加染料的光降解速率。随着pH值从4增加到4,在330分钟后,pH值从4增加到12,在可见光照射下的光降解速率范围从36%到100%,pH值从4增加到4,pH值为12,pH值为12,pH值为12,pH值减少到78%。此外,还进行了ZnO/CuO纳米复合材料的acriflavin Degra dation的反应性物种的捕获实验
在COVID-19大流行期间,基于聚丙烯基的个人保护设备(PPE)的使用显着增加到超过一千万吨。通常,一次使用后,大多数PPE都会被丢弃,以防止用户自感染和传播剂的传播。但是,为了在不损害PPE保护性能的情况下最小化塑料废物,探索新的可重复使用或寿命更长的材料至关重要。在这里,提出了PPE的可见光可见抗菌光动力染料涂层。在这种情况下,发现通过引入两个硫酚单元衍生而来的硫酚甲基甲基蓝(TMB)涂层,发现显示出较高的抗菌活性。TMB被整合到旋转印刷悬浮液中,这是一种基于硝酸盐的商业印刷矩阵。优化了粘合剂中TMB的浓度,并发现5%TMB适用于涂层PPE,可在白光光辐照6小时后将革兰氏阳性和阴性细菌的数量降低99.99%。根据EN 14683测试的细菌效果效率和透气性,证实了TMB涂层不会影响过滤器的性能。因此,这种抗菌光动力染料涂层技术为PPE的更安全,更扩展的使用以及PPE产生的塑料废物的减少提供了有希望的解决方案。
摘要:将五种不同尺寸(170、190、210、230和250 nm)的聚(苯乙烯甲基丙烯酸酯 - 丙烯酸丙烯酸)光子晶体(PCS)(PCS)应用于三种普通织物,即多酰胺,聚酯和棉花。使用扫描电子显微镜和两种UV/VIS反射分光光度计技术(集成球体和散射测量法)分析了PC涂层的织物,以评估PC的自组装以及获得的光谱和颜色特性。结果表明,织物的表面粗糙度对PC产生的颜色产生了重大影响。聚酰胺涂层的织物是唯一具有虹彩效果的样品,比聚酯和棉样品产生更加生动和鲜艳的色彩。观察到,随着入射光角的增加,随着新反射峰的形成,反射峰的高营养偏移发生。此外,用照明剂的光源在聚酰胺样品上进行了颜色行为模拟。照明剂A模拟显示出比用D50照明的模拟颜色更绿色和黄色的结构色。使用散射法对聚酯和棉花样品进行分析以检查虹彩是否在眼检查后看不见,然后证明存在于这些样品中。这项工作可以更好地理解结构颜色及其虹彩如何受到纺织底物形态和纤维类型的影响。
仅供研究使用。不可用于诊断程序。如需了解当前认证,请访问 thermofisher.com/certifications © 2023 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。AN54685_E 11/23M
摘要 —本文介绍了一种从仅具有可见红、绿、蓝数据带的单个高分辨率光学图像中自动检测建筑物的新方法。特别是,我们首先调查阴影证据以关注建筑物区域。然后,提出了一种基于马尔可夫随机场 (MRF) 的新型区域增长分割技术。图像被过度分割为较小的均匀区域,可用于替换像素网格的刚性结构。然后对该区域集应用迭代分类合并。在每次迭代中,使用区域级 MRF 模型对区域进行分类,然后根据阴影的位置,合并具有相同类别的区域以产生形状适合矩形的新区域。使用递归最小边界矩形确定最终建筑物。实验结果证明,该方法适用于各种区域(高密度城市、郊区和农村),并且具有高度的稳健性和可靠性。
摘要 —本文介绍了一种从仅具有可见红、绿、蓝数据带的单个高分辨率光学图像中自动检测建筑物的新方法。具体来说,我们首先调查阴影证据以关注建筑物区域。然后,提出了一种基于马尔可夫随机场 (MRF) 的新型区域增长分割技术。图像被过度分割为较小的均匀区域,可用于替换像素网格的刚性结构。然后对该区域集应用迭代分类合并。在每次迭代中,使用区域级 MRF 模型对区域进行分类,然后根据阴影的位置,合并具有相同类别的区域以产生形状适合矩形的新区域。使用递归最小边界矩形确定最终建筑物。实验结果证明,该方法适用于各种区域(高密度城市、郊区和农村),并且具有高度的稳健性和可靠性。
摘要。可见光通信(VLC)是一项采用发光二极管(LED)的新兴技术,可以同时提供照明和无线数据传输。利用具有成本效益的可打印有机LED(OLEDS)作为VLC系统中环保发射器对光谱,物联网,感应和光学范围的未来应用非常有吸引力。在这里,我们总结了VLC中LED来源的新兴半导体材料的最新研究进度,并突出显示基于无毒和成本效益的有机半导体的OLED有很好的光学通信机会。我们进一步研究了为一般照明实现高性能的白色OLED的努力,尤其是关注基于OLED的VLC的研究状况和机会。还讨论了开发高性能OLED的不同解决方案处理的制造和打印策略。最后,提供了下一代有机VLC的未来挑战和潜在前景的前景。
1化学系数学和自然科学学院,JL帕迪哈丹大学。Raya Bandung Sumedang Km.21,Kabupaten Sumedang 45363,印度尼西亚; u.pratomo@unpad.ac.id(U.P.); rapadhiaa30@gmail.com(R.A.P.); irkham@unpad.ac.id(I.I。); allyn@unpad.ac.id(A.P.S.)2东京大都会大学城市环境科学研究生院应用化学系,日本哈奇奥吉1-1 Minamiosawa,日本; jacob.mulyana@deakin.edu.au 3教育学院,艺术与教育学院,迪肯大学,伯伍德高速公路221伯伍德,伯伍德,VIC 3125,澳大利亚4研究中心,高级材料研究中心,国家研究与创新局,卡瓦桑·塞恩斯·塞恩斯·塞恩斯·塞恩斯·塞恩Habibie,Tangerang Selatan 15314,印度尼西亚5个合作研究中心,高级能源材料,国家研究与创新机构Institut Teknologi Bandung,Bandung 40132,印度尼西亚 *通信 *通信:Inda009@brin.go.div