传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
量子力学系统的希尔伯特空间可以具有非平凡几何,这一认识导致人们在单粒子和多粒子量子系统中发现了大量新奇现象。特别是,与单粒子波函数相关的几何考虑导致了非相互作用拓扑绝缘体 (TI) 的最初发现和最终分类 [1 – 4] ,以及对这些相中缺陷相关特性的研究 [5 – 8] 。另一方面,在分数量子霍尔系统 (FQHS) [9,10] 和分数陈绝缘体 (FCI) [11,12] 的框架内,研究了拓扑与占据非平凡单粒子态的粒子间相互作用之间相互作用所产生的迷人物理。然而,由于后者的关联性质,建立单粒子和多粒子层面上非平凡几何的作用之间的直接关系一直很困难。在本文中,我们展示了二维 (2D) 单粒子能带结构的非平凡几何与相关 Bardeen-Cooper-Schrieffer (BCS) 超导体的响应特性之间的明确联系 [13] 。特别地,我们表明,在用大质量狄拉克模型描述正常态的二维系统中,超导态遵循修改的通量量子化条件,从而产生分数通量涡旋以及非常规约瑟夫森响应。必须强调的是,超导态与正常态没有扰动关系。但是,正如我们在下面所展示的,使用 BCS 变分假设可以处理相变两侧的几何作用。流形量子化源于这样一个事实:在块体超导体内部深处,序参量的整体相位是恒定的。在传统的
•传统公用事业系统(图中间)。发电厂为电网产生电力。可以将一些热量用于地区供暖或工业系统。核电站可能包括储热,因此它们以基础负载运行,电网可变。核电站传统上是基本负荷(高资本成本,低运营成本)。历史上,化石植物提供可调节电力(低资本成本,更高的燃油成本)。风和太阳能可以提供电力,但只有在太阳熄灭并且风吹来时才可以提供电力。•低价电力消耗(图顶)。大规模风和太阳能在某些时候会导致过量产量。在某些时候,大量的核能产生过多的生产能力。在每种情况下,这种电力的燃料成本都非常低。需要有效地使用所有这些电力的方法。我们显示使用过多的电力将火砖加热到高温 - 最低的高温储热材料。通过吹冷空气来恢复热量,以产生热空气,这与燃烧化石燃料相同。这种热空气可用于发电(包括具有热力学顶循环的核电站),工业热和商业热量。这可以直接更换化石燃料。如果排气热量储存,可以燃烧储存的化石燃料,生物燃料或氢气以提供高温热。廉价的供热存储可以为电力设定最低价格。•产生氢(图的底部)。在低碳经济中,全球产量可能超过电力产量的一种能源产品是氢。这是化学过程中使用的氢:氨(肥料的产生),将铁矿石转化为替代焦炭和纤维素碳氢化合物燃料的生产,以替代所有原油。这解决了运输市场和能源存储挑战。潜在需求可能超过每年7.5亿吨氢。生产这么多氢将需要3200 GWE的核或200万平方英里的风电场,或将全球天然气的一半生产转换为氢气的一半,并通过隔离二氧化碳二氧化碳。这假设没有氢被燃烧为能源。可以将电力输出从核氢的产量转换为GIRD,从而提供3200 GWE的可调度电力,并通过存储从存储中氢提供,以维持工业设施的运行。
摘要:二维共轭金属有机框架(2D C-MOF)由于其(半)的导电性能而吸引了对电子的兴趣日益增加。电荷 - 中立2D C-MOF也具有持久的有机自由基,可以看作是自旋浓缩阵列,为Spintronics提供了新的机会。然而,层堆积的2D C-MOF的相邻分子之间的强π相互作用歼灭了活跃的自旋中心,并显着加速了自旋松弛,严重限制了它们作为自旋量子的潜力。在此,我们通过控制层间堆叠来报告2D C -MOF中电荷传输和自旋动力学的精确调整。在共轭配体上引入了笨重的侧基,从而使2D C -MOFS层从锯齿状的堆叠到交错的堆叠量显着脱位,从而在空间上削弱了层间相互作用。因此,2D C -MOF的电导率降低了六个数量级,而旋转密度则增加了30倍以上,并且自旋晶格松弛时间(t 1)增加到〜60 µs,从而使旋转宽松的参考2D C -MOF变得越来越快地占据了旋转的良好。自旋动力学结果还表明,无旋转极化对或双极在这2D C -MOF的电荷传输中起关键作用。我们的策略提供了一种自下而上的方法,可以在2D C-MOF中扩增自旋动力学,从而为开发基于MOF的Spintronics开辟了途径。
微型的两光子成像设备可以在体内和亚细胞分辨率下进行实时成像,这对于临床应用和基础研究(例如神经科学)非常有价值。但是,在不同深度下实现高质量的体积成像仍然具有挑战性。在这项研究中,我们证明了2p纤维镜在直径350μm和400μm深度的圆柱体积上进行三维成像。深度扫描是通过将基于微电视的变种透镜(VL)纳入二维扫描2P Fiberscope来实现的,该扫描的焦点是通过调节VL驱动电压来调节的。首先使用幻像表征纤维镜的性能,然后通过对荧光染色的静电板和GFP小鼠脑切片以及体内动态GCAMP基于醒的小鼠中皮质神经元的基于体内动力学的钙成像来证明。
b'The the pationative效应是指有机自由基用两者取代的有机自由基的稳定性,即绘制电子(或绑架者)组和电子donating(或detative)组。[1 \ XE2 \ x80 \ x935]已调用pationative效应,以合理化自由基稳定性,键强或根治二聚化的趋势以及反应选择性。[1A \ XE2 \ x80 \ x93b,3,6 8]除了它们对基本和一般理解的重要性之外,对基于diaryltetracyanoethane的发起人的启动者,对聚合物科学的修改和c c键强度的重要性也具有实际的重要性,这在聚合物科学中也具有调整启动者(例如Diaryltetryltethacyanoethane的发起者)。[2]鉴于原本难度的启动步骤在整体自由基聚合中的重要性,新的和可调的启动方法的发展是'
为人类肌肉茎(Hmustem)细胞获得的临床前数据表明其在肌肉损伤的背景下的巨大修复能力。但是,它们的临床潜力受到移植后中等生存能力的限制。要克服这些局限性,它们在保护环境中的封装将是有益的。在这项研究中,研究了使用外部或内部凝胶化获得的可调节钙 - 阿尔金酸盐水凝胶作为Hmustem细胞封装的新策略。使用原子力显微镜通过压缩实验来表征这些水凝胶的机械性能。测量的弹性模量强烈取决于胶凝模式和钙/藻酸盐浓度。分别在内部和外部凝胶化后制备的水凝胶获得了从1到12.5 kPa和3.9至25 kPa的值。此外,水凝胶的机械性能差异是由其内部组织产生的,具有内部凝胶的各向同性结构,而外部模式导致各向异性。进一步表明,释放后,保留了藻类水凝胶中掺入的Hmustem细胞的生存力,形态和肌原分化char术。这些结果表明,封装在钙钙酸钙水凝胶中的Hmustem细胞保持其功能,从而可以开发肌肉再生方案以提高其治疗功效。
摘要:我们通过位于平坦介电底物上的平坦石材条的无限光栅考虑了电子极化平面波的散射和吸收。为了构建一个受信任的全波无网格算法,我们将散射问题扔给了双重系列方程,并基于离散傅立叶变换的倒数来执行其分析正则化。然后,对于未知的floquet谐波振幅,该问题将减少到Fredholm 2-Kind矩阵方程。因此,由Fredholm定理保证了所得代码的收敛性。数值实验表明,这种构型是频率选择性的跨表交或一个周期性光子晶体。如果光栅周期和底物厚度是微米大小的,则这种空腔的共振频率在Terahertz范围内。在电子极化情况下不存在等离子体模式,这些共振对应于底物的低Q板模式,并因光栅的存在而略微扰动,并且整个弹药的超高Q晶格模式作为周期开放式腔。我们使用我们的全波数值代码量化了它们的效果,并为晶格模式频率和Q因子得出渐近分析表达式。
(a) 麻醉期间捕获的高分辨率电生理记录和癫痫发作期间在较长时间间隔内捕获的病理记录。(b) 图表说明了传感器在大鼠大脑的横截面视图中的放置位置,作为模型。(c) 与使用电极收集的信号 (蓝色) 相比,从放大传感器 (红色) 获得的信号表现出更高的信号分辨率和幅度。此外,与植入电极 (黑色) 记录的信号相比,放大传感器成功检测到癫痫发作期间明显的 5-10 Hz 振荡信号,这在时频频谱图中很明显。图片来源:POSTECH