https://doi.org/10.26434/chemrxiv-2023-0rfzj orcid:https://orcid.org/000000-0001-5611-5611-0290 content content content content content contem content consect consect consemrxiv note content consemrxiv note contemrxiv consemrxiv notect。许可证:CC BY-NC-ND 4.0
扭曲的双层石墨烯显示出许多引人入胜的特性,可以通过改变其层之间的扭曲角来调节。的确,电子平面波段和相应的强电子定位是在魔法角度附近获得的(〜1.1°),导致观察到几种强相关的电子现象[1]。随后,最近在其他多层(即两层)石墨烯系统中进行了扭曲效应,例如,请参见参考文献。[2]。除了与双层超晶格共有的共同特性外,由于存在大量层以及各种堆叠配置,因此扭曲的多层石墨烯系统还具有不同的性质。显着的特征包括超Heavy和超偏移主义的迪拉克·费米斯的共存和相互作用[3],局部偏置电子状态的共存[4],以及在很大程度上可以通过外部磁场[5] [5]。在本演讲中,我们将讨论通过原子计算证明的扭曲多层石墨烯的这些显着特性[6]。将强调垂直电场的影响(如图1所示)。根据其可调电子性能,还提供了相应的光谱(如图2所示)。
提示 当风扇通电时,拨盘之间的 LED 将根据开启时间旋钮的设置闪烁,然后是关闭时间旋钮:最初 1 秒长闪烁,随后是与拨盘值相对应的多次短 1/4 秒闪烁。
图 1. 发光二极管结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 14 图 12. 变压器特性:(a) 示意图,(b) 机械特性和
该手稿由UT-Battelle,LLC部分撰写,根据与美国能源部(DOE)合同DE-AC05-00OR22725。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了非判定,有偿,不可撤销的,全球范围内的许可,以出版或复制本手稿的已发表形式,或允许其他人这样做,以实现美国政府的目的。DOE将根据DOE公共访问计划(http://energy.gov/downloads/doe-public-access-plan),将公开访问联邦赞助研究结果。
摘要:最近,光学动物的天空,具有复杂矢量结构的拓扑准粒子在光线下引起了越来越多的兴趣。在这里,我们通过理论和实验性地提出了这些普遍的家族,即可调的光泽度,揭示了一种新的机制,可以通过简单的参数调整来转换各种Skyrmionic拓扑之间,包括Néel-,Bloch-,Bloch-和anti-Kyrmion类型。此外,还提出了一种几何Skyrme-Poincaré表示,以可视化可调的天空的完整拓扑演化,我们称之为Skyrmion torus。为了通过实验生成可调节的光学空间,我们基于空间光调节器实现了数字全息图系统,结果与我们的理论预测表现出了很大的一致性。
作者:A Cook · 2020 · 被引用 4 次 — LaMSA 系统加载至弹簧位移 ymax,该位移由加载电机和弹簧力相等计算得出。B-C 解锁和解锁过程中的动态...
是一种在基因组学领域中广泛使用的技术。但是,目前缺乏从纳米孔测序设备创建模拟数据的有效工具,这些工具以时间序列的当前信号数据的形式测量DNA或RNA分子。在这里,我们介绍了Squigulator,这是一个快速而简单的工具,用于模拟逼真的纳米孔信号数据。s弹器采用参考基因组,转录组或读取序列,并生成相应的原始纳米孔信号数据。这与牛津纳米孔技术(ONT)和其他第三方工具的基本软件兼容,从而为纳米孔分析工作流的每个阶段提供了有用的基板,用于开发,测试,调试,验证和优化。用户可以使用模拟特定ONT协议或无噪声“理想”数据的预设参数生成数据,或者他们可以确定性地修改一系列实验变量和/或噪声参数以满足其需求。我们提供了一个简短的用途示例,创建了模拟数据,以模拟不同参数影响ONT基本和下游变体检测准确性的程度。此分析揭示了对ONT数据和基本算法的性质的新见解。我们为纳米孔社区提供了旋转器作为开源工具。
碰撞结果由多种因素决定,例如表面形貌以及本体和地下材料的刚度。例如,最近的研究表明,软聚合物涂层可能提供一种新颖的技术解决方案,可以显著减少甚至消除飞溅。[11] 然而,迄今为止还无法以动态可调的方式改变此类涂层的机械性能。磁活性弹性体 (MAE),也称为磁流变弹性体,是一种物理性能可通过外部磁场控制的智能材料。[2,12–20] 它们是混合材料 [21],由软聚合物基质(有机成分)和嵌入的铁磁微米级颗粒(无机成分)组成。之前的大部分研究集中在 MAE 的本体特性上。就本体机械性能而言,MAE 在较高的磁场下会变得更硬。这意味着它们的弹性模量会随着磁场的增加而增加。 [22] 然而,最近人们意识到,MAE 的表面性质在磁场中也会发生显著改变。特别是,润湿性[23–27]、表面粗糙度[28–33]、粘合性[23,24,34]和摩擦现象[35–37]都被发现强烈依赖于磁场。众所周知,磁场会影响磁流体液滴在刚性非磁性基板上的撞击动力学[38–40],但非磁性液滴撞击磁性基板的情况似乎是迄今为止被忽视的研究方面。MAE 本体和表面性质发生变化的物理原因是磁化填料颗粒的重构,即由于它们之间的磁相互作用而改变它们的相互排列。只有在足够柔软的聚合物基质中,微观结构才会发生显著的重构。因此,获得适当的基质柔软度是 MAE 制造中的重要挑战之一。根据软 MAE 的大磁场诱导结构变化,可以假设 MAE 表面的液滴飞溅也会受到磁场的影响。本文旨在证明通过外部磁场调节 MAE 表面液滴飞溅行为的可行性。基于高速视频图像分析,我们表明通过改变磁通密度,可以在撞击方式之间切换
碰撞结果由多种因素决定,例如表面形貌以及本体和地下材料的刚度。例如,最近的研究表明,软聚合物涂层可能提供一种新颖的技术解决方案,可以显著减少甚至消除飞溅。[11] 然而,迄今为止还无法以动态可调的方式改变此类涂层的机械性能。磁活性弹性体 (MAE),也称为磁流变弹性体,是一种物理性能可通过外部磁场控制的智能材料。[2,12–20] 它们是混合材料 [21],由软聚合物基质(有机成分)和嵌入的铁磁微米级颗粒(无机成分)组成。之前的大部分研究集中在 MAE 的本体特性上。就本体机械性能而言,MAE 在较高的磁场下会变得更硬。这意味着它们的弹性模量会随着磁场的增加而增加。 [22] 然而,最近人们意识到,MAE 的表面性质在磁场中也会发生显著改变。特别是,润湿性[23–27]、表面粗糙度[28–33]、粘合性[23,24,34]和摩擦现象[35–37]都被发现强烈依赖于磁场。众所周知,磁场会影响磁流体液滴在刚性非磁性基板上的撞击动力学[38–40],但非磁性液滴撞击磁性基板的情况似乎是迄今为止被忽视的研究方面。MAE 本体和表面性质发生变化的物理原因是磁化填料颗粒的重构,即由于它们之间的磁相互作用而改变它们的相互排列。只有在足够柔软的聚合物基质中,微观结构才会发生显著的重构。因此,获得适当的基质柔软度是 MAE 制造中的重要挑战之一。根据软 MAE 的大磁场诱导结构变化,可以假设 MAE 表面的液滴飞溅也会受到磁场的影响。本文旨在证明通过外部磁场调节 MAE 表面液滴飞溅行为的可行性。基于高速视频图像分析,我们表明通过改变磁通密度,可以在撞击方式之间切换
