利用宽带隙SiC光电导半导体制备的射频/微波定向能量源由于其高功率输出和多参数可调的独特优势而受到广泛关注。过去几年中,受益于激光技术的持续创新和材料技术的重大进步,利用光电导半导体器件已经在P和L微波波段实现了兆瓦级输出功率、频率灵活的电脉冲。本文主要总结和评述了近年来基于SiC光电导半导体器件在线性调制模式下产生高功率光子微波的最新进展,包括所提出的高功率光子微波源的机理、系统架构、关键技术和实验演示,并讨论了未来利用宽带隙光电导体进行更高功率光子微波多通道功率合成发展的前景与挑战。
聚合物和小分子混合薄膜在有机电子器件,尤其是有机太阳能电池中具有极高的应用价值。普通 P3HT 和最先进的 Y 系列非富勒烯受体 (NFAs) 的混合物具有很高的可混溶性,可以抑制相分离和聚集,从而抑制电荷分离和传输。在最近的一项研究中,引入了电流诱导掺杂 (CID),这是一种精确控制溶液中聚 (3-己基噻吩) (P3HT) 聚集的方法。本文使用溶液中高度有序的预聚集来控制纯膜和与 Y12 (BTP-4F-12) 的混合物中的 P3HT 聚集。这使得 P3HT 有机场效应晶体管 (OFET) 器件中的空穴迁移率提高了 25 倍,并且在 Y12 存在下 P3HT 聚集体质量可以在大范围内可调。同时,特别是 Y12 长程有序性因 P3HT 聚集性的增加而受到严重抑制。然而,溶剂蒸汽退火 (SVA) 可导致 Y12 有序性极高,Y12 晶体取向发生变化,P3HT 聚集性进一步改善。因此,仅通过改变加工参数而不改变材料系统的组成,就可以在最终薄膜中获得两种材料不同程度的聚集。
柔韧性具有应变梯度诱导的机械电性转换,使用不受其晶体对称性限制的材料,但是最新的外部电代材料表现出非常小的外部电代电相系数,并且太脆,无法承受大的变形。在这里,受到生物体的离子极化的启发,本文报告了软性水凝胶的巨大离子旋转电离,其中离子极化归因于弯曲变形下的阳离子和阴离子的不同转移速率。发现频率被水凝胶中的阴离子 - 阳离子对和聚合物网络的类型很容易调节。具有1 M NaCl的聚丙烯酰胺水凝胶可实现≈1160μCm-1的创纪录的外部系数,甚至可以通过与离子对和额外的额外的聚卵链协同作用。此外,由于其固有的低模量和高弹性,水凝胶作为纤维外材料可以承受更大的弯曲变形,从而获得更高的极化电荷。然后证明了一个软弹性传感器,以通过机器人的手识别物体识别。发现大大拓宽了外部电源,以使柔软,仿生和生物相容性材料和应用。
水凝胶的独特性质使得设计栩栩如生的软智能系统成为可能。然而,刺激响应型水凝胶仍然受到驱动控制有限的困扰。直接电子控制电子导电水凝胶可以解决这一难题,并允许与现代电子系统直接集成。本发明展示了一种具有高平面电导率的电化学控制纳米线复合水凝胶,可刺激单轴电化学渗透膨胀。该材料系统允许在仅 -1 V 的电压下精确控制形状变形,其中水凝胶本体的电容充电导致高达 300% 的单轴膨胀,这是由于每个电子离子对约 700 个水分子的进入引起的。该材料在关闭时会保持其状态,这对于电调谐膜来说是理想的选择,因为膨胀和中孔率之间的固有耦合使得能够通过电子控制渗透性以实现自适应分离、分馏和分布。用作电化学渗透水凝胶致动器,它们可实现高达 0.7 MPa 的电活性压力(1.4 MPa vs 干燥)和 ≈ 150 kJ m − 3 的工作密度
在量子计算和量子信息处理中,适合某些目的的量子系统的操纵和工程是一项持续的任务。一个这样的例子是量子状态转移(QST),这是量子通信和大规模量子计算的基本要求。在这里,我们在量子旋转网络中提出的最初提议的完美状态转移(PST)协议来设计了四个超导量子位的链条,并成功地证明了从链中的一端的任意单Qubit状态的效率转移到另一端的另一端,从而实现了仅0.986的高度差异,仅在25 ns中获得了0.986。此证明的QST很容易扩展到较大的链和多节点配置,因此可以作为可扩展量子信息处理的理想工具。
Andrew T. Pierce 1 * ‡ # 、Yonglong Xie 1,2,3 * ‡ 、Jeong Min Park 2 *、Zhuozhen Cai 1 、Kenji Watanabe 4 、Takashi Taniguchi 5 、Pablo Jarillo-Herrero 2‡ 、Amir Yacoby 1‡ 1 哈佛大学物理系,美国马萨诸塞州剑桥 02138 2 麻省理工学院物理系,美国马萨诸塞州剑桥 02139 3 莱斯大学物理与天文系,德克萨斯州休斯顿 77005 4 日本国家材料科学研究所电子和光学材料研究中心,日本筑波 305-0044 并木 1-1 5 日本国家材料科学研究所材料纳米结构研究中心,日本筑波 305-0044 并木 1-1 ‡ 通讯作者邮箱:atp66@cornell.edu、yx71@rice.edu、pjarillo@mit.edu、yacoby@g.harvard.edu
摘要:环形谐振器是硅光子学中滤波器、光延迟线或传感器的重要元件。然而,目前工厂中还没有低功耗的可重构环形谐振器。我们展示了一种使用低功耗微机电 (MEMS) 驱动独立调节往返相位和耦合的加/减环形谐振器。在波长为 1540 nm 且最大电压为 40 V 的情况下,移相器提供 0.15 nm 的谐振波长调谐,而可调耦合器可以将直通端口处的光学谐振消光比从 0 调节到 30 dB。光学谐振显示出 29 000 的被动品质因数,通过驱动可以增加到近 50 000。MEMS 环在晶圆级上单独真空密封,能够可靠且长期地保护免受环境影响。我们循环机械致动器超过 4 × 10 9
人工智能 (AI) 的情绪识别是一项具有挑战性的任务。已经进行了各种各样的研究,证明了音频、图像和脑电图 (EEG) 数据在自动情绪识别中的实用性。本文提出了一种新的自动情绪识别框架,该框架利用脑电图 (EEG) 信号。所提出的方法是轻量级的,它由四个主要阶段组成,包括:再处理阶段、特征提取阶段、特征降维阶段和分类阶段。在预处理阶段使用基于离散小波变换 (DWT) 的降噪方法,在此称为多尺度主成分分析 (MSPCA),其中使用 Symlets-4 滤波器进行降噪。可调 Q 小波变换 (TQWT) 用作特征提取器。使用六种不同的统计方法进行降维。在分类步骤中,旋转森林集成 (RFE) 分类器与不同的分类算法一起使用,例如 k-最近邻 (k-NN)、支持向量机 (SVM)、人工神经网络 (ANN)、随机森林 (RF) 和四种不同类型的决策树 (DT) 算法。所提出的框架使用 RFE + SVM 实现了超过 93% 的分类准确率。结果清楚地表明,所提出的基于 TQWT 和 RFE 的情感识别框架是使用 EEG 信号进行情感识别的有效方法。
点的扭转角可以通过改变费米能量、拓扑绝缘体收缩宽度和量子阱带隙来进行调控。27但目前还没有关于分子器件扭转角的系统研究。本文基于非平衡格林函数(NEGF)结合密度泛函理论(DFT),28,29研究了由两个V型锯齿边石墨烯纳米带(GNR)电极连接不同扭转角的CuPc分子构成的CuPc分子器件的量子输运性质。通过改变扭转角可以控制器件的局域自旋态和相关的量子输运性质。结果表明,扭转双层CuPc分子(TTBCPM)的HOMO-LUMO能隙、自旋滤波效率(SFE)和自旋相关电导随扭转角变化。当q较大时,电导和SFE的变化趋势几乎相反。当q=0时电导最大,当q=60时SFE最大,提出了这些现象的物理机制,并通过分析透射光谱、分子能级谱和散射态,进一步理解了具有扭转角的量子传输现象。
基于脉冲神经网络的神经形态计算有可能显著提高人工智能的在线学习能力和能源效率,特别是对于边缘计算。计算神经科学的最新进展证明了异突触可塑性对于网络活动调节和记忆的重要性。因此,在硬件中实现异突触可塑性是非常可取的,但重要的材料和工程挑战仍然存在,需要在神经形态设备方面取得突破。在这篇小型评论中,我们概述了具有可调突触可塑性的硅基多端忆阻设备的最新进展,从而实现了硬件中的异突触可塑性。讨论了这些设备与工业互补金属氧化物半导体 (CMOS) 技术的可扩展性和兼容性。