摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
结构性着色材料可以根据外部刺激改变颜色,这使得它们可能用作比色传感器、动态显示器和伪装。然而,它们的应用受到角度依赖性、响应缓慢以及缺乏时间和空间同步控制的限制。此外,光子薄膜中很容易发生形状不稳定引起的平面外变形,导致光子晶体材料的颜色不均匀。为了应对这些挑战,我们将结构性着色光子玻璃和介电弹性体致动器结合在一起。我们使用外部电压信号快速(远小于 0.1 秒)调整颜色变化。光子玻璃产生的颜色对角度的依赖性较低,因此即使由于电压触发的不稳定性(弯曲或起皱)而弯曲,它们的颜色也是均匀的。作为概念验证,我们展示了一种像素化显示器,其中的各个部分可以独立快速地打开和关闭。这种广角、耐不稳定、变色的平台可用于下一代柔性曲面彩色显示器、具有形状和颜色变化的伪装以及多功能传感器。
完整作者名单:高星耀;普渡大学材料工程学院李雷刚;普渡大学材料工程学院张迪;普渡大学材料工程学院王雪菁;普渡大学材料工程学院简杰;普渡大学材料工程学院何子豪;普渡大学电气与计算机工程学院王海燕;普渡大学系统,MSE;尼尔·阿姆斯特朗工程大楼
Mir Mohammad Sadeghi 1+ , Yajie Huang 2+ , Chao Lian 3,4 , Feliciano Giustino 3,4 , Emanuel Tutuc 5 , Allan H. MacDonald 3 , Takashi Taniguchi 6 , Kenji Watanabe 7 , Li Shi 1,2*
国家固体微观结构实验室,物理学学院,材料科学和智能工程学院,南京大学高级微观结构合作中心,南京大学,南京210093,B北京国民北京国家实验室,北京国民实验室,北京凝聚力物理学,物理学,研究所,中国北非科学院,北非。 d在上海微型系统与信息技术研究所(SIMIT),中国科学学院,上海200050年中国E上海同步辐射设施,上海高海高级研究所中国科学院,中国科学院中国科学院,中国科学院,中国科学院,中国科学学院,中国国家科学院,中国纽约州纽约大学及化学实验室,CORIDIANTION,COMODIANTION,CONEDINAL NENAN CONEMINISTION,CHICORINATION CHICORINIAND,COMODINAIDE,CHICORINATY CONIDIANT,CHICORINATY CONIDINAL,CHICONINIDER,南京210023,中国Nanjing 211806,中国h国家同步加速器辐射实验室,中国科学技术大学,Hefei 230029,中国I Songshan Lake材料实验室,Dongguan 523808,中国
重量/尺寸 制动、直拖杆工作重量 (kg) 制动、可调拖杆工作重量 (kg) 制动/非制动允许总重量 (kg) 制动允许总重量 (kg) 长度 制动、可调拖杆 (mm) 制动、直拖杆 (mm) 非制动、可调拖杆 (mm) 顶篷长度 (mm) 宽度 (mm) 高度 (mm) 压缩空气出口
Ting-Ting Wang 1,2 , Sining Dong 1,2,* , Chong Li 1,2 , Wen-Cheng Yue 1,2 , Yang-Yang Lyu 1,2 , Chen-Guang Wang 1,2 , Chang-Kun Zeng 1 , Zixiong Yuan 1,2 , Wei Zhu 3 , Zhi-Li Xiao 4, 5 , Xiaoli Lu 6 , Bin Liu 1 , Hai Lu 1 , Hua-Bing Wang 1,2,7 , Peiheng Wu 1,2,7 , Wai-Kwong Kwok 4 and Yong-Lei Wang 1,2,7,*
原子级精确的石墨烯纳米带 (GNR) 因其可大幅改变的电子特性而日益受到关注,这些特性可通过在化学合成过程中控制其宽度和边缘结构来定制。近年来,GNR 特性在电子设备中的开发主要集中在将 GNR 集成到场效应晶体管 (FET) 几何形状中。然而,由于存在单栅极,此类 FET 器件的静电可调性有限。本文报道了将 9 个原子宽的扶手椅型石墨烯纳米带 (9-AGNR) 集成到由超窄手指栅极和两个侧栅极组成的多栅极 FET 几何形状中的设备。高分辨率电子束光刻 (EBL) 用于定义窄至 12 纳米的手指栅极,并将它们与石墨烯电极相结合以接触 GNR。低温传输光谱测量揭示了具有丰富库仑钻石图案的量子点 (QD) 行为,表明 GNR 形成的 QD 既串联又并联。此外,结果表明,附加栅极能够实现纳米结中 QD 的差分调谐,为实现基于 GNR 的多点系统的多栅极控制迈出了第一步。
补体系统包括先天免疫系统的前线。是由不同途径中的致病表面模式触发的,级联反应以膜攻击复合物的形成(MAC;补体成分C5B至C9)和C5A(一种有效的过敏毒素),这是一种有效的过敏毒素,通过与C5A受体1(C5AR1)结合,从而引起各种浮力信号(C5AR1)。尽管在消除病原体,从免疫系统中启动和募集髓样细胞以及与其他生理系统的串扰中的重要作用,但补体系统的无意激活仍会导致自源性疾病的自我攻击和过度反应。因此,它构成了专门疗法的有趣靶标。通过在阵发性的夜间血尿中批准eculizumab的批准证明了安全和有效的末端补体途径的范围。此外,已经证明了稀有肾脏疾病的补体贡献,例如狼疮性肾炎,IgA肾病,非典型溶血性尿毒症综合征,C3肾小球糖或抗神经粒细胞质抗体抗体抗体相关的血管炎。本综述总结了补体系统中终端效应剂在这些疾病中的参与,并概述了目前正在临床发育中的补体组件C5,C5A,C5AR1和MAC的抑制剂。此外,讨论了严重的Covid-19患者的补体活动与肺损伤之间的联系,并提出了在Covid-19中使用补体抑制剂的潜力。
1 浙江大学物理系量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310027 2 清华大学高等研究院,北京 100084 3 伊利诺伊大学香槟分校物理系,伊利诺伊州厄巴纳 61801-3080,美国 4 中国科学技术大学中国科学院量子信息重点实验室,合肥 230026 5 中国科学院量子信息与量子物理卓越创新中心,合肥 230026 6 南京大学先进微结构协同创新中心,南京 210093 7 中国科学院量子光学重点实验室,上海 200800