心脏细胞电生理学的建模是系统生物学中最成熟的领域之一。这种扩展的研究工作集中的集中度带来了新的挑战,其中最重要的是选择哪种模型最适合解决特定的科学问题。在上一篇论文中,我们介绍了开发在线资源以在广泛的实验场景中对电生理细胞模型进行表征和比较的最初工作。在这项工作中,我们描述了我们如何开发了一种新颖的协议语言,使我们能够将数学模型的细节(大多数心脏细胞模型采用了普通微分方程的形式)与所模拟的实验协议分开。我们开发了一个完全开放的在线存储库(我们称为心脏电生理网络实验室),该存储库可以允许用户存储和比较将相同的实验协议应用于竞争模型的结果。在当前的论文中,我们描述了这项工作的最新和计划的扩展,重点是支持从实验数据中构建模型的过程。我们概述了开发一种可读性语言的必要工作,以描述从湿实验室数据集中推断参数的过程,并通过使用实验数据拟合HERG通道模型的详细示例来说明我们的方法。我们通过讨论在该领域取得进一步进步的未来挑战,以促进心脏细胞模型开发的完全可重现方法,以进一步的进步。©2018作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
认知神经科学的一个主要假设是,大脑结构与其功能相关,因此也与行为相关。事实上,评估基因与行为之间遗传关系的调查表明存在遗传联系,表明存在共同的生物学基础 (1, 2)。同时,有各种因素影响着大脑结构、功能和行为的个体间和个体内变异的测量。例如,局部大脑结构和功能并不是稳定的特征,而是会在整个生命周期内发生变化 (3, 4),并根据环境因素以及协变量而变化,例如液体摄入量 (5)、一天中的时间 (6)、血压 (7) 和性别 (8, 9)。此外,行为也会在整个生命周期内发生变化 (10),并受到各种因素的调节或混淆,例如情绪 (11)、社会因素 (12) 和/或一天中的时间 (13)。此外,基于任务和基于问卷的同一行为标记并不总是一致的 (14)。因此,我们剩下(i)可变的大脑指标,(ii)可变的行为指标,主要在许多个体的单个时间点进行测量,以及(iii)可能调节大脑行为关联的协变量。
类器官通过在体外准确重现组织和肿瘤的异质性,为推动临床前研究和个性化医疗展现出巨大潜力。然而,缺乏标准化的癌症类器官培养方案阻碍了可重复性。本文全面回顾了当前与癌症类器官培养相关的挑战,并强调了该领域最近的多学科进展,特别关注肝癌类器官培养的标准化。我们讨论了导致技术差异的非标准化方面,包括组织来源、加工技术、培养基配方和基质材料。此外,我们强调需要建立可重复的平台,以准确保留母体肿瘤的遗传、蛋白质组学、形态学和药理学特征。在每个部分的末尾,我们的重点转移到原发性肝癌的类器官培养标准化。通过应对这些挑战,我们可以提高癌症类器官系统的可重复性和临床转化,从而使其在精准医疗、药物筛选和临床前研究中具有潜在应用。
塑料污染是一个棘手的问题 1 ,它遍及所有环境领域,在空间和时间上的严重程度各不相同。一项全球塑料条约正在筹备中 2 ,其雄心勃勃的目标是制定一套具有法律约束力的工具,旨在阻止或减少塑料流入环境。政策制定者和科学家们期待着批准基于针对不同分析场景的现成方法的监测计划。然而,塑料监测正面临着可重复性危机 3 。尽管人们试图定义监测指南,但仍然没有被广泛接受的监测框架。人们已经开发出量化塑料污染的工具和协议,但这些方法通常会提供无法比拟的结果,即使应用于相同的环境基质 4 。
3 美国新罕布什尔州汉诺威达特茅斯学院心理与脑科学系;4 德国柏林马克斯普朗克人类发展研究所适应性理性中心;5 美国德克萨斯州奥斯汀德克萨斯大学奥斯汀分校心理学系;6 瑞士洛桑洛桑大学医院和洛桑大学放射科;7 美国加利福尼亚州斯坦福大学心理学系,8 美国密苏里州圣路易斯华盛顿大学圣路易斯心理与脑科学系;9 波兰托伦尼古拉哥白尼大学现代跨学科技术中心;10 丹麦哥本哈根 Rigshospitalet 神经生物学研究部;11 哥本哈根大学计算机科学系
方法:我们开发了 WiSDM,这是一种半自动化工作流程,旨在使创建开放、可重复、透明的外来入侵物种风险地图变得民主化。为了方便使用 WiSDM 制作外来入侵物种风险地图,我们统一并公开发布了分辨率为 1 平方公里、覆盖欧洲的气候和土地覆盖数据。我们的工作流程能够减轻空间采样偏差,识别高度相关的预测因子,创建集成模型来预测风险,并量化空间自相关性。此外,我们还提出了一个新颖的应用程序,通过量化和可视化模型预测的置信度来评估模型的可迁移性。所有建模步骤、参数、评估统计数据和其他输出也均自动生成,并保存在一个 R markdown 笔记本文件中。
在可靠性研究中,当使用阈值电压 (V th ) 作为指标时,阈值电压 (V th ) 的不稳定性会造成问题,因为它会完全模糊由于实际器件老化而导致的最终漂移。这种不稳定性是在电气特性测量期间观察到的,与晶体管的“偏置历史”有关,这会在结构的不同层中引入载流子捕获/去捕获。因此,需要新的方法来克服这种与捕获相关的不稳定性问题,以便准确监控器件老化。为了解决阈值电压测量的可重复性问题,我们研究了其在 GaN 晶体管上的不稳定性。研究了在实际 V th 测量之前应用的预处理步骤。所提出的预处理方法基于在栅极端子上应用专用的 V GS (t) 偏置,从而导致 V th 的稳定和可重复值。通过分析预处理的 V th 测量后的漏极泄漏测量,可以确定实现观察到的 V th 稳定性的机制。它展示了空穴注入结构的作用。提出预处理 V th 测量方法作为补充测量,以便在未来的可靠性研究中正确跟踪 pGaN HEMT 的老化。
当前批准的嵌合抗原受体T(CAR-T)细胞产物是自体T细胞,经过基因设计,以表达“汽车”,可将T细胞重定向到杀死肿瘤细胞。1 In pivotal clinical trials, CAR-T cells have demonstrated unprece dented anti-tumor efficacy leading to a shift in the treatment paradigm for plasma cell and lymphoid malignancies including B-cell acute leukemia (B-ALL), large B-cell lymphomas (LBCL), mantle cell lymphoma (MCL), follicular lymphoma (FL), multi PLE骨髓瘤(MM)和慢性淋巴细胞性白血病/小淋巴细胞性白血病(CLL/SLL)。迄今为止,美国食品和药物管理局(FDA)已批准了六种商用CAR-T细胞产品,用于各种类型的复发或难治性(R/R)血液学恶性肿瘤,如表1所示。尽管基于单臂注册研究获得了许多此类疗法的批准,但重要的是要注意,证明的功效表现出了惊人的效果,足以进行FDA批准。然而,这些研究的概括性标准的普遍性仍有待证明。除了确认疗效外,常规临床实践的研究还必须证明不符合试验指定纳入和排除标准的患者的安全性。即使在关键临床试验中,CAR-T细胞也会诱导严重和威胁生命的毒性,例如细胞因子释放综合征(CRS)和免疫效应细胞相关的神经毒性(ICAN),需要在经验丰富的中心进行早期和专业的管理方案。2为此,迄今为止进行的现实结果(RWO)研究满足了稳定效力的重要需求,同时还建立了在临床试验之外注入CAR-T细胞的安全性。为此,迄今为止进行的现实结果(RWO)研究满足了稳定效力的重要需求,同时还建立了在临床试验之外注入CAR-T细胞的安全性。
在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。