Keywords: BP neural network, fuzzy control, cutting platform height, multisensor ABSTRACT In this paper, BP neural network is used to collect header height, AMEsim is used to simulate and analyze header height adjustment hydraulic system, and fuzzy PID control is used to adjust header lifting hydraulic cylinder to stabilize header height. The experimental results of harvesting different crops show that under the header height automatic control system, the error between the actual height of crop harvesting and the set height is within 15 mm, and the harvesting effect is good, which can meet the automatic regulation requirements of the header height of the multi crop combine harvester. 摘要 为了提高调节的精度,采用 BP 神经网络多传感器融合处理技术采集割台实时高度,通过 AMEsim 软件对割台 高度调节液压系统进行仿真分析,最后采用模糊 PID 控制比例电磁阀调节割台升降液压缸从而稳定割台高度。 通过收获油菜、谷子和水稻的试验结果证明:在割台高度自动控制系统下,作物收获的实际高度与设定高度误
( 174,451 ) ( 1,785,028 ) 5,157,804 ( 5,168,975 ) 6,556,224 本期间其他综合(损失)收益 ($ 180,586 ) ($ 1,518,143 ) $ 5,058,424 ($ 5,350,764 ) $ 6,845,979 本期间综合收益总额 $ 168,699 $ 6,603,118 $ 15,074,954 $ 4,998,566 $ 20,321,670 归属于母公司所有者的利润 $ 326,181 $ 7,597,454 $ 9,529,665 $ 9,664,753 $ 12,902,085 非控制性权益 $ 23,104 $ 523,807 $ 486,865 $ 684,577 $ 573,606 综合收益(亏损)归属于: 母公司所有者 $ 187,315 $ 6,320,332 $ 13,061,017 $ 5,550,153 $ 17,710,554 非控制性权益 ($ 18,616 ) $ 282,786 $ 2,013,937 ($ 551,587) $ 2,611,116 每股基本收益 6(28) 每股基本收益 $ 0.13 $ 2.92 $ 3.67 $ 3.72 $ 4.97 稀释每股收益 6(28) 稀释收益每股 0.13 美元 2.92 美元 3.66 美元 3.71 美元 4.95 美元
关键词:BP神经网络,模糊控制,割台高度,多传感器 摘要 本文采用BP神经网络对割台高度进行采集,利用AMEsim对割台高度调节液压系统进行仿真分析,采用模糊PID控制调节割台升降液压缸,稳定割台高度。收获不同作物的试验结果表明,在割台高度自动控制系统下,作物收获的实际高度与设定高度的误差在15 mm以内,收获效果良好,能够满足多作物联合收获机割台高度自动调节的要求。 摘要 为了提高调节的精度,采用 BP 神经网络多传感器融合处理技术采集割台实时高度,通过 AMEsim 软件对割台 高度调节液压系统进行仿真分析,最后采用模糊 PID 控制比例电磁阀调节割台升降液压缸从而稳定割台高度。 通过收获油菜、谷子和水稻的试验结果证明:在割台高度自动控制系统下,作物收获的实际高度与设定高度误
产品规格 美国国际单位制 机械质量 3.8 lbm 1.72 Kg 输出步长 0.0625 度 空载时的转换率 >9 度/秒 环境温度下 4 度/秒时的输出扭矩 125 in-lb 14 Nm 无动力保持扭矩(最小值) 8 in-lbf 0.90 Nm 扭转刚度 20,000 in-lbf/rad 2,260 Nm/rad 电气 绕组电阻(标称值) 57 Ω 绕组电感(典型值) 30 mH 输入电压范围 24-32 Vdc 位置传感器 电位器 执行器 独立负载额定值(有关组合负载,请咨询 Sierra Space Engineering) 轴向 725 lbs 3.2 kN 径向 725 lbs 3.2 kN 力矩 350 lb-in 39.5 Nm 热工作温度 -22 °F 至 +149 °F -30 °C 至 +65 °C 非工作温度 -40 °F 至 +167 °F -40 °C 至 +75 °C 注意:此数据仅供参考,可能会更改。请联系 Sierra Space 获取设计数据。
在本文中,我们讨论了具有开放边界条件的量子比特(自旋 1/2)双量子电路的杨-巴克斯特可积性问题,其中两个电路复制品仅在左边界或右边界耦合。我们研究了体积由自由费米子 XX 类型或相互作用 XXZ 类型的基本六顶点幺正门给出的情况。通过使用 Sklyanin 的反射代数构造,我们获得了此类设置的边界杨-巴克斯特方程的最一般解。我们使用此解从转移矩阵形式构建具有两步离散时间 Floquet(又名砖砌)动力学的可积电路。我们证明,只有当体积是自由模型时,边界矩阵通常才是不可分解的,并且对于特定的自由参数选择会产生具有两个链之间边界相互作用的非平凡幺正动力学。然后,我们考虑连续时间演化的极限,并在 Lindbladian 设置中给出一组受限边界项的解释。具体来说,对于特定的自由参数选择,解对应于开放量子系统动力学,源项表示从自旋链边界注入或移除粒子。
基于图卷积的方法已成为图表表示学习的标准,但它们对疾病预测任务的应用仍然非常有限,这特别是在神经发育和神经发育生成脑疾病的分类中。在本文中,我们通过在图形采样中掌握聚合以及跳过连接和身份映射来引入Ag-Gregator归一化卷积网络。提出的模型通过将成像和非成像特征同时纳入图节点和边缘来学习歧视图形节点表示形式,以增强预测能力,并为基础的脑疾病的基础机械抗体提供整体观点。跳过连接使信息从输入功能直接流到网络的后期层,而身份映射有助于在功能学习过程中维护图的结构信息。我们根据两个大型数据集,自闭症脑成像数据交换(ABIDE)和阿尔茨海默氏病神经影像学计划(ADNI)进行了替补,以预测自闭症谱系障碍和阿尔茨海默氏症的异常。实验结果表明,与最近的基线相比,我们的方法的效率是几个评估指标的表现,分别在Abide和ADNI上的图形卷积网络上,分类的分类卷积网络分别获得了50%和13.56%的相关性改善。
最近邻间距分布遵循一维泊松分布P(s)=e−s[7],而混沌系统则表现出能级排斥力,其P(s)根据其对称性类接近于随机矩阵理论(RMT)的维格纳猜测,当s较小时,P(s)∝sβ,其中对正交、酉和辛对称,β=1,2,4,这是著名的Bohigas-Giannoni-Schmit(BGS)猜想的内容[8]。BGS猜想现在在半经典理论中得到了很好的证实,适用于具有适当经典极限的系统[9-11],并得到许多不同量子系统中大量数值和实验证据的支持[12-14]。多体量子系统的情况则不太清楚,尽管最近取得了一些理论进展 [ 15 – 17 ] 。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常,BGS 猜想被认为对多体量子系统也成立,这主要基于数值结果,但仍缺乏严格的推导。可积和混沌通用极限之间的转变是非通用的,取决于所研究的特定系统的特性,尽管已针对不同系统进行了非常详细的探索 [ 18 , 19 ] 。例如,在可积与混沌正交情况之间的转变中,一些系统表现出分数能级排斥,P(s)∝sβ,β值在可积情况β=0与对应的RMT系综值β=1之间连续变化,而其他系统则表现出满能级排斥,但仅限于一部分能级[20]。许多系统,特别是多体情况,表现出前一种行为。然而,Berry和Robnik的半经典转变理论预测了后一种行为[19]。在这种情况下P(0)=F,其中F由所考虑模型的经典极限的相空间中规则轨道的分数给出。在开放量子系统中,该理论的发展要落后得多,即使第一批结果是在BGS猜想提出后不久就出现的[21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子随时间演化的特征。在马尔可夫近似下,刘维尔算子是线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22] 。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。该问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布符合得很好 [21] 。在混沌极限中,对于较小的s值,存在普遍的立方斥力P(s)∝s3,就像在非厄米随机矩阵的Ginibre系综中一样[23],尽管完整P(s)分布的细节取决于非厄米矩阵的对称性[24,25]。对于开放量子自旋链,从可积到混沌的转变中的能级间距分布可以通过具有谐波约束的静态二维库仑气体来拟合,其中能级斥力由温度的倒数给出,表现出转变中的分数能级斥力[26]。最近,由于发现了新的可积多体刘维尔粒子家族[27-29],人们需要采用不同的方法来研究开放量子系统的可积和混沌特性。扩展精确可解和量子可积的 Liouvil 函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌 Liouvil 函数复谱的统计特性 [ 30 , 31 ] 。然而,在物理多体 Liouvil 函数中,精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在本文中,我们将基于 SU(2) 自旋 1 Richardson 模型的文献 [ 28 ] 模型扩展到有理 Richardson-Gaudin (RG) 类可积模型中的可积线。这种新的可积 Liouvil 函数族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们
辛对称性,这是著名的Bohigas-Giannoni-Schmit (BGS)猜想的内容[8]。BGS猜想目前在半经典理论中已经得到充分证实,适用于具有适当经典极限的系统[9–11],并得到许多不同量子系统中大量数值和实验证据的支持[12–14]。多体量子系统中的情况尚不清楚,尽管最近取得了一些理论进展[15–17]。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常假设BGS猜想对多体量子系统也成立,这主要基于数值结果,但仍然缺乏严格的推导。可积通用极限与混沌通用极限之间的转变是非通用的,取决于所研究特定系统的特性,尽管已针对不同系统进行了非常详细的研究 [18,19]。例如,在可积和混沌正交情况之间的转变中,一些系统呈现分数能级排斥,P ( s ) ∝ s β,β 的值在可积情况β = 0 和相应的 RMT 集合值β = 1 之间连续变化,而其他系统呈现满能级排斥,但仅限于一部分能级 [20]。许多系统,特别是在多体情况下,都表现出前一种行为。然而,Berry 和 Robnik 的半经典转变理论预测了后一种行为 [19]。在这种情况下,P (0) = F,其中 F 由所考虑模型的经典极限在相空间中的规则轨道分数给出。在开放量子系统中,该理论的发展程度要低得多,即使第一批结果在 BGS 猜想提出后不久就出现了 [21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子的时间演化。在马尔可夫近似中,刘维尔算子是一个线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22]。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。解决这个问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布非常吻合 [21]。在混沌极限中,对于较小的 s 值,会出现普遍的立方排斥力 P ( s ) ∝ s 3,就像非厄米随机矩阵的 Ginibre 系综 [23] 中的情况一样,尽管完整的 P ( s ) 分布的细节取决于非厄米矩阵的对称性 [24, 25]。对于开放的量子自旋链,从可积到混沌转变过程中的能级间距分布已通过具有谐波约束的静态二维库仑气体拟合,其中能级排斥力由温度的倒数给出,表现出转变过程中的分数能级排斥力 [26]。最近,由于发现了新的可积多体刘维尔函数家族 [27–29],需要采用不同的方法来研究开放量子系统的可积和混沌性质。扩展精确可解和量子可积刘维尔函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌刘维尔函数复谱的统计特性 [30,31]。然而,物理多体刘维尔函数中精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在这封信中,我们将扩展参考文献中的模型。 [28] 基于 SU(2) 自旋 1 Richardson 模型,将其转换为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 家族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后,我们根据单个参数定义一个 Liouvillian,它在可积性和完全混沌极限之间进行插值。利用这些模型 Liouvillians,我们
初级保健创新咨询公司 (PCIC) 通过与多个欧洲投资和孵化器组织、地区大学和个人发明家/企业家网络建立专有合作伙伴关系,提供了额外的信息收集渠道。不过,PCIC 专家在这个项目上的主要任务是对收到的线索进行初步和第二级评估。所有线索被分为三大类,即“强有力的候选人”、“肯定不行”和“需要更多信息”。然后,我们联系了大多数第三类提供商来解决不确定性。评估的方法和决策标准将在报告后面描述。
智能手机万向节的开发,通过使用微控制器和 MPU 6050 传感器,使其变得简单且更省钱。最近,摄像和图像处理的发展与智能手机技术的快速发展密不可分。最受欢迎的功能之一是相机。手部运动和冲击会导致最大效果减少。为了提高相机拍摄和视频的质量,必须有一个稳定器来稳定相机位置。因此,预计本文的结果能够为廉价的智能手机万向节做出贡献。万向节的设计和实现使用丙烯酸作为材料,厚度为 5 毫米。该 MPU 6050 传感器经过优化,可检测 X、Y 和 Z 轴的摆动或滚动、俯仰和偏航。陀螺仪和加速度计为微控制器提供输入,微控制器将处理 3 个伺服电机的输出,这些伺服电机的作用是将相机的位置保持在指定的设定点。结果表明,MPU 6050 传感器可以响应 1.34° 的滚动、0.25° 的俯仰和 0.78° 的偏航角度读数误差。伺服电机最大运动误差为 1.5°。因此,可以得出结论,万向架可以以更低的成本和更低的误差实现最佳工作。预计下一步研究将增加其他合适且精确的控制,即 PID 或模糊。