基于图卷积的方法已成为图表表示学习的标准,但它们对疾病预测任务的应用仍然非常有限,这特别是在神经发育和神经发育生成脑疾病的分类中。在本文中,我们通过在图形采样中掌握聚合以及跳过连接和身份映射来引入Ag-Gregator归一化卷积网络。提出的模型通过将成像和非成像特征同时纳入图节点和边缘来学习歧视图形节点表示形式,以增强预测能力,并为基础的脑疾病的基础机械抗体提供整体观点。跳过连接使信息从输入功能直接流到网络的后期层,而身份映射有助于在功能学习过程中维护图的结构信息。我们根据两个大型数据集,自闭症脑成像数据交换(ABIDE)和阿尔茨海默氏病神经影像学计划(ADNI)进行了替补,以预测自闭症谱系障碍和阿尔茨海默氏症的异常。实验结果表明,与最近的基线相比,我们的方法的效率是几个评估指标的表现,分别在Abide和ADNI上的图形卷积网络上,分类的分类卷积网络分别获得了50%和13.56%的相关性改善。
主要关键词