传统中药(TCM)是数千年来中国国家的实际经验和摘要。它在治疗各种慢性疾病,复杂疾病和主要的传染病方面具有巨大的潜力,并逐渐吸引了世界各地人们的注意。但是,由于TCM处方和动作机制的复杂性,TCM行业的发展仍处于相对保守的阶段。随着人工智能技术在各种领域的兴起,许多学者开始将人工智能技术应用于传统的中医行业,并取得了显着的进步。本文全面地总结了人工智能在传统方面的发展中,包括新药发现,数据挖掘,质量标准化和传统中医行业技术的重要作用。还强调了这些应用中人工智能的局限性,包括缺乏药理研究,数据库质量问题以及人类计算机互动带来的挑战。然而,人工智能的发展为传统中医的现代化带来了新的机会和创新。将人工智能技术纳入中医行业的全面应用中,预计将克服传统中医学行业面临的主要问题,并进一步促进整个中医学行业的现代化。
新生成AI(GAI)系统的病毒启动,例如Chat-GPT和文本形象(TTL)发电机,引发了有关如何将它们有效地纳入写作教育的问题。但是,目前尚不清楚小学环境中的CEIVE和可疑GAI系统的老师,父母和学生如何。,我们与8-12岁的儿童进行了一个与十二个家庭(亲子二元组)的讲习班,并采访了16名老师,以了解每个利益相关者对GAI的观点和观点,以了解GAI的学习和教学写作。我们发现,GAI系统可能会受益于为教师提供适应性的教学伴侣,增强想法,并为学生提供个性化的,及时的反馈。但是,人们担心AU Thorship,学生的学习代理以及有关偏见和错误信息的不确定性。在本文中,我们讨论了设计策略,以通过实施成人视觉系统,平衡AI-lole分配并促进定制,以增强学生的代理机构,以编写项目来减轻这些限制。
purcell增强量子点(QD)单光子发射和设备亮度的增加,已经证明了各种类型的微腔。在这里,我们提出了第一个实现截断的高斯形状的微腔与QD的截断。实施基于湿化学蚀刻和外延半导体过度生长。实验研究了腔模式及其空间纤维,并与模拟很好地吻合。可以通过制造设计可重复控制具有6000张Q-因子的基本模式波长,而29 L EV的小极化分裂可以重复控制,从而使腔体适应了特定的QD。最后,通过温度调节对腔内QD的过渡进行调节和关闭共振。在共振上减少了一个以上的因子减少的衰减时间清楚地表明purcell的增强,而G(2)(0)¼0.057的二阶相关测量结果证明了QDS单光子特性得以保留。
1 Politehnica Timisoara大学,建筑学院。 traian lalescu nr。 2,300 223,Timişoara,Jud。 timiş,româniadaniel-beniamin.muntean@student.upt.oupt.ro,adriana.tokar@upt.ro,daunt.tokar@upt.tupt.ro,Alexandru.dorca@upt.ro doi:10.37789/rjce.2024.15.1.11.11摘要。 全球温度和当前能源环境的升高使Timișoara(部分翻新)的地区供暖系统陷入了崩溃的边缘。 因此,需要进行重大投资和对可再生能源(RES)整合的方向。 文章通过举例说明了一个案例研究,即在蒂米奥拉拉(Timișoara)提供建筑学院(CT)建筑物的热点上的光伏技术的整合。 该研究是在Polysun软件的帮助下进行的。 获得的结果表明,通过在4个建筑物体(ASPC,存款,CT和金属)的屋顶上安装许多1095光伏(PV)面板,热能和肘部能量成本降低了38.51%。 关键词:加热系统,res 1。 在罗马尼亚引言中,加热系统是通过大量CO 2排放量[1],[2],[3],[4],是最受污染的公共服务之一。 通过特定化,关于Timișoara的加热系统(完全尚未被验证),与全球温度升高和当前的能源危机有关的全球环境问题使该系统陷入了崩溃的边缘。1 Politehnica Timisoara大学,建筑学院。traian lalescu nr。2,300 223,Timişoara,Jud。 timiş,româniadaniel-beniamin.muntean@student.upt.oupt.ro,adriana.tokar@upt.ro,daunt.tokar@upt.tupt.ro,Alexandru.dorca@upt.ro doi:10.37789/rjce.2024.15.1.11.11摘要。 全球温度和当前能源环境的升高使Timișoara(部分翻新)的地区供暖系统陷入了崩溃的边缘。 因此,需要进行重大投资和对可再生能源(RES)整合的方向。 文章通过举例说明了一个案例研究,即在蒂米奥拉拉(Timișoara)提供建筑学院(CT)建筑物的热点上的光伏技术的整合。 该研究是在Polysun软件的帮助下进行的。 获得的结果表明,通过在4个建筑物体(ASPC,存款,CT和金属)的屋顶上安装许多1095光伏(PV)面板,热能和肘部能量成本降低了38.51%。 关键词:加热系统,res 1。 在罗马尼亚引言中,加热系统是通过大量CO 2排放量[1],[2],[3],[4],是最受污染的公共服务之一。 通过特定化,关于Timișoara的加热系统(完全尚未被验证),与全球温度升高和当前的能源危机有关的全球环境问题使该系统陷入了崩溃的边缘。2,300 223,Timişoara,Jud。timiş,româniadaniel-beniamin.muntean@student.upt.oupt.ro,adriana.tokar@upt.ro,daunt.tokar@upt.tupt.ro,Alexandru.dorca@upt.ro doi:10.37789/rjce.2024.15.1.11.11摘要。全球温度和当前能源环境的升高使Timișoara(部分翻新)的地区供暖系统陷入了崩溃的边缘。因此,需要进行重大投资和对可再生能源(RES)整合的方向。文章通过举例说明了一个案例研究,即在蒂米奥拉拉(Timișoara)提供建筑学院(CT)建筑物的热点上的光伏技术的整合。该研究是在Polysun软件的帮助下进行的。获得的结果表明,通过在4个建筑物体(ASPC,存款,CT和金属)的屋顶上安装许多1095光伏(PV)面板,热能和肘部能量成本降低了38.51%。关键词:加热系统,res 1。在罗马尼亚引言中,加热系统是通过大量CO 2排放量[1],[2],[3],[4],是最受污染的公共服务之一。通过特定化,关于Timișoara的加热系统(完全尚未被验证),与全球温度升高和当前的能源危机有关的全球环境问题使该系统陷入了崩溃的边缘。由于罗马尼亚(电力供应网络和可燃天然气供应网络)的主要能源供应网络(电气和热力)无法接管提供热能的提供,因此不能以如此高的消耗尺寸,这是需要升级系统的升级[5]。
February 6, 2024 MEMORANDUM SUBJECT: Integrating Climate Change Adaptation Considerations into the Resource Conservation and Recovery Act Corrective Action Process FROM: Carolyn Hoskinson, Director TO: Land, Chemicals, and Redevelopment Division Directors, Regions 1-10 PURPOSE This memorandum 1 conveys the U.S. Environmental Protection Agency's (EPA or Agency) recommendations on how EPA regions and authorized states should work with RCRA facility owners or经营者将气候变化适应考虑因素整合到1976年《资源保护和恢复法》(RCRA)下的纠正行动过程中,并由1984年的危险和固体废物修正案(HSWA)修订。2纠正措施是RCRA处理,存储和处置设施的所有者和运营商在保护和清理危险废物和成分的释放中,以保护人类健康和环境的必要条件。气候变化可以增加极端天气事件的频率和强度,例如降水量和风暴;或可能导致更多逐渐变化,例如海平面上升。降水量或温度的季节性变化,洪水的风险增加,飓风和野火的强度和频率的增加以及北部地区多年冻土的融化是气候相关变化的其他例子,这可能会影响RCRA清理。这些更改可能导致
学位:工程师(学士)学位课程:电气和自动化技术专业人员主体:电力技术说明:大学老师Tatu Suomi Konecranes Oy的主任Marko Talala本文的目的是研究电池能量学位:工程师(学士)学位课程:电气和自动化技术专业人员主体:电力技术说明:大学老师Tatu Suomi Konecranes Oy的主任Marko Talala本文的目的是研究电池能量
抽象的仪器电池电池(即包含传感器的那些)和智能电池(具有集成控制和通信电路)对于开发下一代电池技术(例如钠离子电池(SIB))至关重要。参数的映射和监视,例如温度梯度的量化,有助于改善单元格设计并优化管理系统。必须保护集成的传感器免受严酷的电解环境。最先进的涂料包括使用Parylene聚合物(我们的参考案例)。我们将三种新型涂料(基于丙烯酸,聚氨酯和环氧树脂)应用于安装在柔性印刷电路板(PCB)上的热敏电阻阵列。我们系统地分析了涂料:(i)电解质小瓶中的PCB浸没(8周); (ii)分析插入硬币细胞的样品; (iii)分析1AH小袋SIBS的传感器和细胞性能数据。基于钠的液体电解质,由溶解在碳酸乙烯酸乙酯和碳酸二乙二烯的混合物中的1 m溶液(NAPF 6)的比例为3:7(v/v%)的混合物组成。我们的新型实验表明,基于环氧的涂层传感器提供了可靠的温度测量。与戊烯传感器相比,观察到的出色性能(据报道,一个样品的错误结果,在电解质中浸入5 d以下)。核磁共振(NMR)光谱在大多数测试的涂层的情况下显示,在暴露于PCBS涂抹的不同涂层期间发生了其他物种。基于环氧的涂层表现出对电解环境的韧性,并且对细胞性能的影响最小(与未修饰的引用相比,在2%的硬币细胞中,容量降解在2%以内,小袋细胞的3.4%以内)。这项工作中详细介绍的独特方法允许传感器涂层在现实且可重复的细胞环境中进行试验。这项研究首次证明了这种基于环氧树脂的涂层使可扩展,负担得起和弹性的传感器能够集成到下一代智能SIBS上。
摘要认知架构和生成模型的整合对两个系统内的社会文化表示意味着什么?除了集成之外,我们认为这个问题对于理解这两种类型的计算系统之间的整合的潜在更广泛影响至关重要。生成模型尽管对世界和各种环境的不完善,但仍可以作为一般世界知识有用,并仔细地确定了其中提供的社会文化代表,包括代表的社会文化系统,或者,正如我们外面的人类类型一样。因此,这种整合提供了开发从生理/生物时间尺度到社会时间范围代表的认知模型的机会,并且更准确地代表了正在进行的社会文化系统和结构对行为的影响。此外,集成这些系统应被证明对AUDIT有用,并在更现实的COG固定用途和条件下测试许多生成模型。也就是说,我们可以问到什么意味着人们可能会使用知识从知识中使用知识来实现自己的行为和行为。我们进一步讨论了这些观点,并使用持续和潜在的工作(主要)(主要)ACT-R Cog-nitive Architecture着眼于这些观点。我们还讨论了使用发电模型作为集成系统的问题。
卢旺达监管机构支持更多地采用自备电力和分布式能源资源,将可再生能源技术整合到电网中 2022 年 10 月——近几十年来,卢旺达在增加电力供应方面取得了重大进展,目前的家庭连通率为 71.92%。1 然而,缺乏可靠、负担得起的现代能源服务仍然是一个问题——例如,电力供应成本是该地区最高的成本之一,这对经济和工业发展都提出了挑战。在此背景下,卢旺达政府通过其 2018/19-2023/24 能源部门战略计划,设定了到 2024 年实现 100% 的家庭用电目标。该计划指出,52% 的家庭将通过电网供电,48% 的家庭将通过离网系统供电,其中可能包括自备电力和分布式能源资源 (DER)。 2 在美国国际开发署 (USAID) 和 Power Africa 的资助下,国家监管公用事业委员会协会 (NARUC) 为卢旺达公用事业监管局 (RURA) 提供技术援助,以起草卢旺达 DER 的法规。制定卢旺达 DER 许可和使用法规将提高监管确定性并为私营部门在卢旺达投资 DER 技术创造有利环境,从而也支持 Power Africa 增加兆瓦 (MW) 和国内连接的目标。 使用 DER 和自备电力扩大电气化 DER 涵盖一系列为电网提供服务并连接到配电网或位于最终用户附近的中小型能源技术资产。这些包括但不限于屋顶太阳能光伏 (PV)、微型风力涡轮机、电动汽车、热电联产和微电网。 3 DER 可以为电网带来显著的好处,例如为客户节省成本、通过增加可再生能源发电减少温室气体排放、增强电网弹性,以及让消费者更好地控制自己的电力。4 此外,它们还可以减少需求并提供供应以满足配电网的能源、容量和辅助服务需求。5 自备电力是指发电资产位于大型商业、工业或机构设施客户的电表后面,这些客户的能源供应质量和连续性非常重要。从历史上看,这些系统使用化石燃料,但最近已经转向使用 DER,形式为小型到中型太阳能和存储系统,以利用太阳能成本的下降。6 尽管 DER 已成为自备发电的一个更广泛的例子,但值得注意的是,自备电力的范围可以从数百兆瓦到几千瓦 (kW),并可根据不同的应用和尺寸连接到高压、中压和低压系统。卢旺达预计太阳能分布式能源将广泛应用于该系统;工业和住宅客户都越来越有兴趣安装相对较大的(50kW 以上)太阳能电池板或发电系统,主要是为了减少电费或提高供电可靠性。7 自备电力也提供了一个通过扩大电气化来帮助实现国家能源部门目标的机会。使用自备电力的行业可以与周围的定居点共享能源,作为自备发电机向电网或他人运营的微电网供电。此外,住宅消费者并不被排除在自备电力市场之外,如果他们想向电网出售多余的能源,可以登记他们的发电量。8
1复杂物质系,约瑟夫·斯特凡·研究所(Josef Stefan Institute),1000卢布尔雅那,斯洛文尼亚2,华盛顿州立大学化学系,华盛顿州普尔曼,美国华盛顿州90164,美国3菲西卡3. 100190,中华人民共和国5物理学学院,中国科学院,北京100190,中华人民共和国6 IMPMC 6 IMPMC,SorbonneUniversité,CNRS和MNHN,PARIS 75005,法国75005,法国7,化学与材料科学系,Aalto Camer,Aalto Finland cam,Aalto Finland o anto fi-00076 62032,意大利9 Dipartimento di Scienze Matematiche,Fisiche e Informatiche,Universit'a di Parma,43124,意大利43124,意大利10 Infn,Sezione di Milano bicocca NM 87545, United States of America 12 SPMS, CNRS CentraleSupelec Universite Paris-Saclay, Gif-sur-Yvette F-91192, France 13 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America 14 Institute of Materials for Electronics and Magnetism, CNR, Parma A-43124,意大利