目前的工作旨在根据基于锆石矿物质在各种钙化温度下制造Na1ÞX Zr 2 Si X P 3-X O 12化合物。在250、500和1000 C中钙化了制造的化合物。钙化温度对制造化合物的结构,晶相和辐射屏蔽特性的影响。X射线衍射衍射仪表明,单斜晶相出现在250 c的钙化温度下,500°C完全转化为高度对称性六边形晶体相。 122Kev。在本研究中对钙化温度对G射线屏蔽行为的影响进行了清晰的影响,当钙化温度从250 C的250 C升高到1000 C时,线性衰减系数在122KeV时的影响增加了218%。©2023韩国核协会,由Elsevier Korea LLC出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要 本研究旨在从塞内加尔刺桐叶和茎皮中分离植物成分,并评估其对与糖尿病相关的消化酶α-葡萄糖苷酶的抑制活性。对叶子的植物化学研究结果分离出三种皂苷(3-5)、两种三萜类化合物(7和8)和两种甾体(10a和10b)作为不可分离的混合物,而从茎皮中分离出一种皂苷(6)、一种三萜类化合物(9)和两种肉桂酸酯的混合物(2a和2b)。除化合物2b、7、8、10a和10b外,所有分离的化合物均为首次从刺桐属植物中报道。两种肉桂酸酯(2a 和 2b)的混合物乙酰化后,生成一种新的二酯衍生物(1),俗称刺桐花苷。与标准药物阿卡波糖相比,提取物和纯化合物(3、4、6)表现出良好的 a -葡萄糖苷酶抑制活性。研究结果表明,E. senegalensis 的皂苷可用于开发潜在的抗高血糖药物。
抽象旨在靶向在黑色素瘤细胞中表达的维生素D受体(VDR),维生素D 3功能化杂交脂质脂质 - 脂质 - 聚合物纳米颗粒(HNP-VDS),该粒子(HNP-VDS)包含聚(乳酸 - 糖甘氨酸酸)(PLGA)核心(PLGA)核心(PLGA)核心和脂质壳的氢化酶(Sodylocation),磷酸化磷酸盐(HNP-VDS)(SPCC)磷酸酯(Hoplocy)(HNP-VDS)(HNP-VDS)(HNP-VDS)合成了1,2-二甲酰基-SN-甘油-3-磷酸乙醇胺-N [琥珀酰基(聚乙烯基)-2000(DSPE-PEG 2000)。将纳米载体优化为脂质表面积覆盖率为97%。体外药物释放研究显示,在最初的24小时内,初始爆发释放,然后是扩散运输。最后,细胞摄取实验表明,HNP-VD有效地获得了B16黑色素瘤细胞,从而导致有前途的媒介物可以提供用于黑色素瘤治疗的治疗剂。
透明细胞肾细胞癌 (ccRCC) 是肾细胞癌 (RCC) 的主要类型,常与冯·希佩尔·林道 (VHL) 基因的缺失或突变、糖脂代谢增强以及肿瘤微环境的异质性有关。RCC 细胞中的 VHL 改变导致缺氧诱导因子及其下游靶点血管内皮生长因子的激活,以及多种细胞死亡途径的重编程和代谢无力,包括铁死亡,这与靶向治疗或免疫治疗有关。生物代谢物 (如铁和脂质) 的变化支持铁死亡作为 RCC 的潜在治疗策略,而铁代谢和铁死亡调控已在许多研究中被作为抗 RCC 剂进行研究,并且各种铁死亡相关分子已被证明与 ccRCC 的转移和预后有关。例如,谷胱甘肽过氧化物酶4和谷氨酰胺酶抑制剂可以抑制嘧啶合成并增加VHL缺陷型RCC细胞中的活性氧水平。此外,经历铁死亡的肿瘤细胞释放的损伤相关分子模式也介导抗肿瘤免疫,免疫治疗可以通过铁死亡与靶向治疗或放疗产生协同作用。然而,诱导铁死亡不仅可以抑制癌症,而且由于其对抗癌免疫的潜在负面影响,还会促进癌症发展。因此,铁死亡和各种肿瘤微环境相关分子可能在RCC的发展和治疗过程中共同发生,进一步了解铁死亡的相互作用、核心靶点和相关药物可能为RCC治疗提供新的联合用药策略。本文我们总结了关于铁死亡和RCC的关键基因和化合物,以展望未来的治疗策略并为通过铁死亡克服RCC耐药性提供足够的信息。
事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
对形成碳键的新方法的探索,导致结构新颖的桥接化合物的合成对科学界而言至关重要。许多桥接化合物是众所周知的天然产物和生物活性支架的部分结构,并且也是许多反应中的剂量[1](图1)。桥接分子的结构唯一性,例如它们的设计,异常对齐和诱人的化学反应,具有较小的桥梁群体鼓励我们检查其独特的有机,猜想和光谱研究[2]。设计一种连贯的策略来访问桥接化合物的综合策略的令人震惊的综合挑战,该化合物具有非保障的热力学稳定性,在合成化学家中产生了好奇心[3]。在桥位的杂原位的紧张的杂循环部分的合成是一项迷人的合成工作,由于兴高采烈以及许多有用的特性,与碳环糖化合物相比,由于兴高采烈以及许多有用的特性,它一直在获得大量的cur现利息[4]。在1928年,奥托·迪尔斯(Otto Diels)教授和他的学生库尔特·奥尔德(Kurt Alder)报告了关于合成的[4Þ2]环加成反应的开创性工作
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
成功地开发了一条与非海洋可生物降解钓鱼线相同程度的淋巴结伸长率,并展示了海洋生物降解性。钓鱼线在遗弃后沉入海底时会加速。实际上在实际海洋区域的现场测试中确认了钓鱼线的降解性。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
