能量使用 - 并非真正的“绿色”,强调PCB和组件)。这可能会导致较高的成分和焊料氧化问题,从而导致枕头缺陷中的头部更大倾向•这是一种沉淀的合金,因此机械性能
摘要。本文重点介绍了新方法对FE80CR20合金粉的结晶石尺寸和热稳定性的影响。通常,在高温下施用时,球铣削样品和超声技术样品会产生不满意。此外,两种技术的组合尚未进行。因此,本研究旨在研究一种适当的技术,以产生最小的结晶石尺寸,以提高热稳定性。应用了新的机械合金(Mill)和超声技术(UT)的方法,以减少结晶石尺寸并提高热稳定性。新方法称为组合处理。这种情况允许增强Fe80cr20合金粉的热稳定性。在这项研究中,通过铣削时间为60小时,进行了机械合金工艺。然后,在3、3.5、4、4.5和5小时以35 kHz的频率进行超声波技术。从XRD分析中,发现较宽的峰表明较小的结晶石尺寸。它表明,当机械合金合金60小时(60 h),然后进行超声处理4.5小时(UT 4.5 h)时,组合处理(铣削和UT)将结晶石尺寸降低到2.171 nm。最小的结晶石尺寸可增强高达12.7 mg的热稳定性,在1100 0C温度运行期间通过TGA分析显示。组合处理是有效制造FE80CR20合金粉末的方法。关键字:Crystallite大小;热稳定性;机械合金;超声技术和
Linde 是 Linde plc 及其附属公司使用的公司名称。Linde 徽标、Linde 字样和 TRUFORM™ 是 Linde plc 或其附属公司的商标或注册商标。版权所有 © 2024。Linde plc。
Link-easy Aerospace 的 SBN 系列分离螺母是一种非常简单有效的压紧和释放机构,由镍钛诺形状记忆合金 (SMA) 丝驱动。分离螺母既具有高负载能力(1~20KN),又具有快速驱动时间(~50ms)。我们的分离螺母使用带有冗余 SMA 丝的分段螺母作为触发器。SMA 触发器可实现快速响应,并且释放冲击很小。设备中内置冗余开关,当分离螺母释放或装备时发出“开”或“关”信号,从而简化地面操作和飞行任务要求。分离螺母集成了旋转机构,使其能够在安装外壳内旋转高达 ± 2 °,从而保证较大的角度错位公差。分离螺母配备两个机械接口:标准顶部安装 (SBN-STD) 和底部安装 (SBN-BM)。
对于大多数应用,INCONEL 718 合金被指定为:固溶退火和沉淀硬化(沉淀硬化、时效硬化和沉淀热处理是同义词)。合金 718 通过将次生相(例如伽马素和伽马双素)沉淀到金属基体中而硬化。这些镍(铝、钛、铌)相的沉淀是通过在 1100 至 1500°F 的温度范围内进行热处理引起的。为了使这种冶金反应正常进行,时效成分(铝、钛、铌)必须溶解(溶解在基体中);如果它们以其他相的形式沉淀或以其他形式组合,则它们将无法正确沉淀,并且无法实现合金的全部强度。要执行此功能,必须首先对材料进行固溶热处理(固溶退火是同义词)。INCONEL 718 合金通常采用两种热处理: •固溶退火温度为 1700-1850°F,然后快速冷却(通常在水中),再加上在 1325°F 下沉淀硬化 8 小时,炉冷至 1150°F,在 1150°F 下保持,总时效时间为 18 小时,然后空气冷却。•固溶退火温度为 1900-1950°F,然后快速冷却(通常在水中),再加上在 1400°F 下沉淀硬化 10 小时,炉冷至 1200°F,在 1200°F 下保持,总时效时间为 20 小时,然后空气冷却。如果材料需要进行机械加工、成型或焊接,则通常在轧机退火或应力消除状态下购买。然后在材料最具延展性的状态下进行制造。制造后,可以根据适用规范的要求进行热处理。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
威斯康星大学 - 米尔沃基大学Pradeep K. Rohatgi博士教授Anton Ficai教授Anton Ficai教授,Bucharest Politehnica大学教授Jufu Jiang博士,Harbin Technology Assoc。 中国达利安大学的Xiaojun Yan博士。 日本Kindai大学Masaaki Nakai博士教授。 印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University威斯康星大学 - 米尔沃基大学Pradeep K. Rohatgi博士教授Anton Ficai教授Anton Ficai教授,Bucharest Politehnica大学教授Jufu Jiang博士,Harbin Technology Assoc。中国达利安大学的Xiaojun Yan博士。 日本Kindai大学Masaaki Nakai博士教授。 印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University中国达利安大学的Xiaojun Yan博士。日本Kindai大学Masaaki Nakai博士教授。 印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University日本Kindai大学Masaaki Nakai博士教授。印度科学学院班加罗尔协会的Ajay Kumar教授。 穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University印度科学学院班加罗尔协会的Ajay Kumar教授。穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University穆罕默德·阿卜杜勒·哈迪·格佩雷(Mohamed Abdel-Hady Gepreel) Fevzi Bedir,Gebze技术大学教授HayrettinAhlatçı博士,Karabuk大学教授AliGüngör博士,Karabuk大学教授Burhanettinİnem博士,Gazi University
摘要目的:在数字社会中,人们在家庭外部各个地方进行活动时需要使用一系列日常技术(ET)。这项研究的目的是描述和比较房屋外访问的ET和地方的使用情况,并描述在获得脑损伤后残疾人(ABI)不同严重性的患者中它们之间的关系。材料和方法:解决用途的仪器,访问室外的地方以及残疾的严重性被用于评估74名ABI患者。对关系进行了统计分析。结果:与中度残疾/严重的残疾(MD/SD)相比,发现与公共空间和公共空间ET相关的个人ET的使用明显更高的使用与公共空间和公共空间相关,使用ET的能力更高,并且在房屋以外访问的地方有更多的访问量(GR)。ET的使用与总样本和MD/SD的访问的地方显着相关,但是对于具有GR的人,没有发现显着相关性。结论:为了促进ABI之后的参与,需要在康复中评估ET的使用与在房屋之外的地方的使用之间的关系。
PCC Rollmet开发了一种独特的冷挤压工艺,可以在各种材料上生产精确的薄壁管,包括镍合金,不锈钢,铝和碳钢,这些材料可用于各种应用。
摘要:金属的生产占所有工业温室气体排放量的40%,全球能源消耗的10%,32亿吨矿物的开采和每年数十亿吨副产品。因此,金属必须变得更加可持续。循环经济模型不起作用,因为市场需求超过了目前的可用废料大约三分之二。即使在最佳条件下,将来至少三分之一的金属也将来自初级生产,从而产生巨大的排放。尽管已经讨论了金属对缓解策略和社会经济因素的影响,但使冶金部门更可持续的基本材料科学的解决方案较少。这可能归因于以下事实:可持续金属的领域描述了全球挑战,但尚未描述一个均匀的研究领域。然而,这一挑战的巨大幅度及其巨大的环境影响,这是由于每年生产的超过20亿吨金属引起的,它使其可持续性成为重要的研究主题,不仅从技术的角度来看,而且从基础材料研究的角度来看。因此,本文旨在识别和讨论最紧迫的科学瓶颈问题和关键机制,考虑了金属(矿物),次级(废料)和第三(重新开采)的金属合成以及能量密集型的下游处理。重点放在材料科学方面,尤其是那些有助于减少CO 2排放的材料科学方面,而对过程工程或经济的却更少。本文并未描述金属相关的温室气体排放对气候的破坏性影响,但是科学方法如何通过可以使冶金化石无效的研究来解决这一问题。内容仅考虑冶金可持续性(生产)的直接措施,而不是通过其性质(强度,重量,寿命,功能)杠杆作用的间接度量。