另外,QTerminals 在其 X 平台上表示,“滚装船数量本月(2024 年 12 月)创下新高,凸显了我们在处理特殊货物方面的专业知识日益增长。” 该帖子指出,哈马德港在 2024 年 12 月接收了 151 艘船只,而集装箱、散货、散货和滚装船的吞吐量分别为 121,365 TEU、14,633 F/T(货运吨)、35,139 F/T 和 16,681 单位。 QTerminals 每年在哈马德港处理超过 232,000 公吨的大麦,在支持卡塔尔的食品和饲料行业方面发挥着至关重要的作用。 这一关键的进口确保了基本成分的稳定供应,为国家的粮食安全做出了贡献。 作为卡塔尔通往世界贸易的主要门户,哈马德港已实施了一系列措施来保护环境和应对气候变化。 P3
使用MMI Cellcut(一种提供精确的单细胞隔离的高级激光显微解剖(LMD)系统)解锁研究的全部潜力。此功能强大的工具对于精确样本准备至关重要,为您提供了在各个研究领域成功下游实验所需的明确定义的起始材料。样品安装在载玻片和载体膜之间,以确保有效防止污染的无接触式切割过程。体验LMD作为您的基础研究资产的准确性和效率差异。
自定义您的仪器以实现高质量和高吞吐量TEM样品准备。利用Crossbeam 350的可变压力能力。使用Crossbeam 550准备最苛刻的样品,选择最适合您样品的腔室尺寸。或选择Crossbeam 550样品模式用于先进的,完全自动化的,无监督的多站点TEM Lamella制备。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。所有行动都将保护和维护陆军人员和财产,避免意外损失。程序将确保与陆军行动和活动相关的公共安全以及安全和健康的工作场所、程序和设备。遵守有关电力、电缆和线路的所有安全和/或环境预防措施。在设备操作期间提供排气通风,并在需要时使用听力保护装置,如《武器装备 AR 385-10》、《清洁空气法案》(CAA)和 CAA 修正案以及 OSHA 危害通报标准。事故是陆军任务、战备、士气和资源的不可接受的障碍。各级决策者将采用风险管理方法,有效排除与此任务相关的人员和财产安全不可接受的风险。(a)承担个人责任。(b)实践安全操作。(c)识别不安全行为和条件。(d)采取行动防止事故发生。(e)报告不安全行为和条件。禁止在电气设备(CPU、文件服务器、打印机、投影仪等)附近或周围放置任何食物或饮料,因为可能会造成触电或设备损坏。在这些区域内或穿过这些区域时,请小心谨慎。避开所有电线和相关线路。如果遇到雷暴天气,您将被要求关闭设备电源。
使用Proteome Discoverer 3.2软件和Sequest®HT搜索算法进行数据分析。肽的修饰包括用于HELA的氨基甲基甲基化(C)的动态修饰,用于蛋白质混合物的羧甲基化(C),TMTPRO标签(N-末端,K)和MET氧化。FDR阈值在渗透剂节点中设置为1%,以识别肽和蛋白质鉴定的高置信度。在报告基因离子量化器节点中指定了11 ppm的记者离子峰积分耐受性,并使用新的集成的报告频道控制通道范围的范围范围范围进行了剥离和非剥离的控制通道,对剥离和非置换通道组的归一化进行了归一化。
摘要。数字签名是各种协议中提供完整性和真实性的基本构建块。量子计算的发展引发了人们对传统签名方案所提供的安全保障的担忧。CRYSTALS-Dilithium 是一种基于格密码学的高效后量子数字签名方案,已被美国国家标准与技术研究所选为标准化的主要算法。在这项工作中,我们提出了 Dilithium 的高吞吐量 GPU 实现。对于单个操作,我们采用一系列计算和内存优化来克服顺序约束、减少内存使用和 IO 延迟、解决银行冲突并缓解管道停顿。这为每个操作带来了高且平衡的计算吞吐量和内存吞吐量。在并发任务处理方面,我们利用任务级批处理来充分利用并行性并实现内存池机制以实现快速内存访问。我们提出了一种动态任务调度机制来提高多处理器占用率并显着缩短执行时间。此外,我们采用异步计算并启动多个流来隐藏数据传输延迟,并最大限度地发挥 CPU 和 GPU 的计算能力。在所有三个安全级别中,我们的 GPU 实现在商用和服务器级 GPU 上实现了超过 160 倍的签名加速和超过 80 倍的验证加速。这为每个任务实现了微秒级的摊销执行时间,提供了一种适用于实际系统中各种应用的高吞吐量和抗量子解决方案。
这项工作通过将飞秒激光处理与串联神经网络的逆设计功能相结合,展示了一种设计光子表面的方法,该功能将激光器制造参数与所得的纹理底物光学特性联系起来。开发了高吞吐量的制造和表征平台,该平台生成一个数据集,该数据集在不锈钢上具有35280个独特的微织物表面,具有相应的测量光谱发射率。受过训练的模型利用光谱发射率和激光参数之间的非线性一对多映射。因此,它主要生成新颖的设计,该设计仅使用激光参数空间的紧凑区域比训练数据中所代表的小25倍,从而再现了光谱发射率的全部范围(平均根平均值<2.5%)。最后,在嗜热伏洛尔特发射器设计应用程序上对逆设计模型进行了实验验证。通过协同激光 - 物质与神经网络能力的相互作用,该方法可以洞悉加速光子表面的发现,从而推进能量收集技术。
在一种方法中,MS 1完全扫描和基于PRM的实验均以量化小鼠粪便样品中的胆汁酸,旨在提高注释率和准确的定量。基于RP-LC的方法表现出较高的灵敏度(对于大多数分析的胆汁酸,柱上的LOQ 12.7 fmtololes)和一个线性动态范围,跨越了5个数量级,图6A。同位素标记的胆汁酸被用作内部标准标准(IS),以确保精确的定量并评估数据质量,可靠性和测量鲁棒性,并评估了保留时间,质量准确性和信号响应等指标。最小的色谱移动和一致的信号响应,这是样品重复的变化系数较低,而在整个采集期间,所有内部标准均始终达到可再现的峰面积,图6B。
用高吞吐量测量单细胞密度可以使免疫细胞和药物1的动态分析2 Weida Wu 1,2,Sarah H. Ishamuddin 1,Thomas W. Quinn 3,4 3,4,Smitha Yerrum 3,4,Smitha Yerum 3,4,Ye Zhang 1,Ye Ye Zhang 1,Ye Ye Ye Zhang 1,Yedie L. DeBaiz 5,3 pei-lun karie arie karie 3,4,du un kao 3,4,4,4,4,4 ,4,; Murakami 5 , Morvarid Mohseni 6 , Kin-Hoe Chow 3,4 , Teemu P. 4 Miettinen 1 , Keith L. Ligon 3,4,7,8,9,* , Scott R. Manalis 1,2,7,10,* 5 6 1 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA.7 2马萨诸塞州理工学院生物工程系,21 Ames ST#56-651,剑桥,马萨诸塞州02139,美国。然而,现有的密度测量缺乏21个精度或吞吐量,无法量化细胞状态的细微差异,尤其是在主要样本中。22在这里,我们提出了一种方法,可以通过将荧光排除显微镜与悬浮的24个微通道谐振器进行整合,以0.03%(0.0003 g/ml)的精度为0.03%(0.0003 g/ml)的密度。将这种方法应用于人淋巴细胞时,我们发现细胞25密度及其变化随着细胞从静止状态过渡到增殖状态而降低,26表明分子拥挤的水平会降低,并在进入细胞周期时受到更高的调节。使用胰腺癌患者衍生的异种移植模型,我们发现原发性肿瘤细胞对药物治疗的EX 28体内密度反应可以预测体内肿瘤生长29反应。45 46测量细胞密度的主要挑战是获得高采样吞吐量以及高47精度。8 3患者衍生模型中心,达纳 - 法伯癌症研究所,美国马萨诸塞州波士顿伯灵顿大街21号,美国马萨诸塞州02215,美国9 4病理学系,达纳 - 法伯癌症研究所,哈佛大学450 Brookline Avenue,波士顿,波士顿,波士顿,马萨诸塞州马萨诸塞州02215 02215, USA 11 6 Oncology Discovery, Bristol-Myers Squibb, 250 Water St, Cambridge, MA 02141, USA 12 7 Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA 13 8 Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02215, USA 14 9 Department of Pathology,波士顿儿童医院,哈佛医学院,马萨诸塞州波士顿朗伍德大街300号,美国马萨诸塞州02115,美国15 10 Massachusetts理工学院机械工程系,马萨诸塞州33 Massachusetts Ave,Masbridge,MA 02139,USA,美国16 17 *通讯作者Keith_ligon@dfci.harvard.eduuuse; srm@mit.edu 18 19细胞密度,细胞质量与体积的比率是分子拥挤的指标,因此是细胞态和功能的20个基本决定因素。我们的方法揭示了细胞状态过渡30期间分子拥挤的意外行为,并将密度作为功能精确药物的新生物标志物。31 32 33细胞密度取决于细胞的干质量组成和水的细胞体积的比例,34反映其分子拥挤水平。尽管细胞质量和体积在增殖的35个细胞中可能会变化高达50%,但细胞密度受到严格调节,以保持最佳的分子拥挤水平1,2,3。使用流线型的音量传感单元,可以实现63环境36提示,例如养分耗竭和渗透压变化会改变分子拥挤,37个通过改变扩散率和蛋白质构象1,4,5来影响细胞生物化学。38个拥挤水平和细胞生理学之间的耦合使细胞密度成为表征基本细胞39过程的关键,例如增殖,凋亡,代谢转移和分化1,3,指出了其潜在的40个生物标记物,用于细胞适应性和药物反应。对细菌和酵母41等单细胞生物的研究报告说,在42种增殖和休眠之间的细胞状态过渡过程中,分子拥挤水平显着变化,并且人们认为密度被认为急性地反映了这些过渡5-8。在原发性哺乳动物细胞中是否存在密度和增殖之间的这种43连接尚不清楚,部分原因是44归因于现有密度测量方法的局限性。传统的梯度离心方法在人口水平上评估细胞密度,但速度为48,需要大量样本量,这限制了它们用于研究瞬态生物学过程的使用。单49个细胞测量结果揭示了人群内细胞密度的异质性,从而深入了解了密度50调节。磁悬浮方法通过平衡细胞的重力来确定单细胞的密度,而51浮力培养基9,10施加的浮力。方法检测干质密度(总数超过52体积的干质量),例如定量相显微镜(QPM)或与细胞体积53测量相结合的拉曼成像,提供替代密度测量值11,12,13,14,15,16。尽管这些方法提供了54个亚细胞分辨率和单细胞跟踪,但在测量细胞密度时,迄今为止使用哺乳动物细胞发表的实验含有55米至数百个单细胞。悬浮的微通道谐振器(SMR)56是一种微流体质量传感器,已用于通过测量两种类型的流体中的57个细胞的57个质量来测量单细胞密度,具有不同的密度为17,18-20。但是,这种方法的吞吐量为58限制为每个实验几百个单元,因为它要求细胞在两种类型的59种流体中进行顺序测量。60 61 SMR和QPM设备已经达到了每62个实验21-23的数十万个单元的吞吐量。
液体活检中癌组织DNA或CFDNA(无细胞DNA)的当前基因组和表观基因组分析依赖于单独的,时间和样品耗尽的技术来进行体细胞变异检测或甲基化分析。在这里,我们描述了使用Agilent Avida靶向富集溶液进行体细胞和甲基化分析的敏捷Bravo自动化液体处理平台的工作流程和性能。该溶液可以有效地分析低输入肿瘤DNA或CFDNA样品。Avida Duo工作流程可以高度敏感地检测单核苷酸变体(SNV),插入和缺失(Indel),拷贝数变化(CNV),转运(TL)和DNA甲基化谱,而没有任何样品分开。