摘要:已提出分层TIS 2作为各种电池化学的多功能宿主材料。尽管如此,尚未完全了解其与水性电解质的兼容性。在此,我们报告了可逆的水合过程,以说明相对稀释电解质中TIS 2的电活性和结构性演变,以用于可持续的锂离子电池。溶剂化的水分子在Tis 2层中与Li +阳离子一起插入,形成了一个水合相,具有LI 0.38(H 2 O)2-δTIS2的名义公式单位作为末端。我们明确地通过互补的电化学循环,Operando结构表征和计算模拟来确认两层插入水的存在。这样的过程是快速且可逆的,在1250 mA g -1的电流密度下提供60 mAh g -1放电能力。我们的工作为基于可逆的水共同点的高速水性锂离子电池提供了进一步的设计原理。W
溶解气体的气体气体tritium tritium tritium tritium tritium �������农业研耗硫六氟 碳同位素 - ������农业研磨 �������农业研耗二进制混合模型模型地球化学反向模型冲积含水层含水层。
1)通常与热泵结合使用的低温含水层热能储存(LT-ates),导致冷井的注射温度在5°C和10°C之间,在温暖井中在13°C到30°C。在地下水中非常有效的直接冷却是使这种存储在经济上具有竞争力的原因。2)用于大规模热储存的高温热能储存(HT-ATS),在40至90°C之间的热井中注射温度。“冷”井的注入温度可以在5°C至60°C之间,具体取决于土壤组成以及输送系统的需求/限制。Ates需要一个适合渗透率条件的含水层,该含水层可以提取和注入地下水。要进入地下水,需要在目标含水层的穿孔屏幕上安装管井。电潜水泵(ESP)用于提取和注入地下水。ATES系统可用于每小时或每日周期。每个井的功率输出受局部地质条件和所施加温度范围的限制。与其他技术(例如储罐存储(TTE))的组合可以在任何必要的地方补偿有限的功率输出。
免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
c) 剖面 A – A*。剖面图中显示的 Riegel Horizon (RH) 未在数值模型中考虑。数据来自 GDI-BW (2015)、Geofabrik (2022)、USGS (2017)。水头数据来自弗莱堡环境保护局和巴登-符腾堡州环境、调查和自然保护研究所 (LUBW)。剖面图根据 Wirsing 和 Luz (2005) 修改。
技术描述 在含水层热能存储 (ATES) 中,多余的热量被储存在地下含水层中,以便在后期回收热量。热能被储存为温暖的地下水。地下水还用作将热量传输到地下和从地下传输热量的载体。因此,热能通过从含水层通过井生产和注入地下水来储存和回收。ATES 系统的容量范围从 0.33 MW 到 20 MW(Fleuchaus 等人,2018 年)。通常,ATES 按季节运行。夏季,来自燃气或燃煤发电厂、太阳能发电厂或热电联产厂的多余热量通过热交换器转移到冷地下水中。由此产生的温暖地下水将热量输送到含水层,热量在那里储存起来。在冬季,ATES 通过逆转生产井和注入井中的流量以相反的方向运行。现在,通过热交换器从温暖的地下水中回收储存的热量并用于供暖,而将产生的冷地下水重新注入含水层。通常,注入井和生产井之间的距离在 1000 米到 2000 米之间(Stober 和 Bucher 2014)。含水层的深度也各不相同。例如,在柏林,ATES 的深度在浅层含水层中为 30 米到 60 米之间,而在诺伊鲁平,深度约为 1700 米。在荷兰,大多数 ATES 系统使用地下深度在 20 米到 150 米之间的含水层(Bloemendal 和 Hartog 2018)。与深度相对应,热存储以不同的温度运行。低温 (LT) ATES 的运行温度低于 30°C,通常位于浅层含水层;中温 (MT) ATES 指的是 30°C 至 50°C 之间的温度范围;高温 (HT) ATES 的运行温度为 50°C 及以上(Lee 2013)。与 MT 和 HT-ATES 相比,由于 LT-ATES 中的温度较低,因此使用热泵将温度升高到加热相关建筑物所需的水平,例如 40°C。同时,抽取的地下水被冷却到 5°C 至 8°C 之间的温度。随后,将冷地下水重新注入冷井。夏季,可以使用冷井中的地下水有效地为建筑物降温。由于热泵的冷却过程,该水被加热到 14°C 至 18°C 之间的温度范围。随后,加热的地下水通过暖井储存在 LT-ATES 中,以便在冬季回收。如果冷却不需要在前一个冬季储存的低温地下水附近安装任何设施,则称为免费冷却。当多余的热量
摘要:浅层开环地热系统通过双抽水井和回注井在含水层中产生热和冷储备。布鲁塞尔市中心的三栋相邻建筑采用了这种含水层热能存储 (ATES) 系统。其中两栋建筑利用了由新生代砂岩组成的同一含水层,分别于 2014 年和 2017 年开始运营。Bult é 等人 (2021) 开发的先前水文地质模型表明,其中一个系统的热不平衡如何危及该上部含水层的热状态。在这里,研究并模拟了与位于古生代基岩深层含水层中的较新的第三个 ATES 系统的相互作用。在根据两个含水层的地下水流条件进行校准后,使用 3D 水文地质模型来模拟两个开发含水层中的三个地热装置的累积效应。模拟结果表明,尽管两个含水层之间的水力相互作用非常弱(如观察到的不同电位水头所示),但两个含水层之间通过隔水层进行热交换。幸运的是,这些热交换不足以对单个地热系统的效率产生重大影响。此外,这项研究清楚地表明,在下层含水层中增加第三个系统,在 10 月至 3 月期间平均加热功率为 286 kW,在 4 月至 9 月期间平均冷却功率相同,是有效的。
摘要:这项研究的目的是确定使用氢化方法降解所选农药(pyraclostrobin和boscalid)从农业废物(废水)中降解并评估其去除效率的可行性。这将允许从农业废水中回收水和原材料。此外,还使用生物制备来提高过程的效率和降解速率,并减少废水中化合物的半衰期。农药通常用于农业,用于实验。这项研究是在两个相同的氢化治疗系统中以微生物支持和不支持的相同的氢化治疗系统进行的。同时,为了鉴定农药,优化了一种基于液相色谱串联质谱的分析方法,从而可以确定具有令人满意的敏感性,准确性和精确性的废水中所施加的农药。根据数学模型和废水中农药消失动力学的方程式确定了氢化床中农药分解的动力学。废水中农药的DT 50半衰期的参数和理论的参数
摘要:电磁 (EM) 加热是一种将可再生能源(例如光伏太阳能和风能)储存到含水层的新兴方法。我们研究捕获的能量如何在六个月内提高原型深层含水层的温度,然后研究在连续六个月内可以回收储存的能量的程度。以恒定流速注入的水同时使用在 2.45 GHz 水自然共振频率下工作的高频电磁微波发射器加热。耦合的储层流和 EM 加热使用达西方程和能量平衡方程描述。后者包括一个考虑 EM 波传播和吸收的源项,使用麦克斯韦方程单独建模。这些方程通过 Galerkin 最小二乘有限元法进行数值求解。使用从受控实验室实验中获得的 EM 加热输入数据验证了该方法,然后将其应用于含水层。我们发现,经过六年的交替储存和回收,考虑到根据现场数据估算的实际热损失,注入能量的回收率高达 77%。即使热损失增加了两倍,在这种情况下,注入能量的回收率也高达 69%。这表明,井下电磁加热是一种非常有效的可再生能源储存方法,能够帮助解决其固有的间歇性问题。