• 最先进的多实验室(~20)研究设施,旨在促进合作 • 关闭但分开“爆炸”和“惰性”设施,以平衡安全性、并发操作和最大化交互。• 正在进行的爆炸操作的实时人员通知代表性能力和设备: • 含能材料的结构-性能关系: • 能量的小尺度灵敏度、热、化学和物理特性 • 军械材料的准静态、动态和高重力加载;
摘要:法医和安全部门一直需要快速、现场、易于使用、非侵入式地对爆炸前犯罪现场的完整高能材料进行化学鉴定。仪器小型化、数字数据的无线传输和云存储以及多变量数据分析方面的最新技术进步为近红外 (NIR) 光谱在法医科学中的应用创造了新的、非常有前景的选择。这项研究表明,除了滥用药物外,具有多变量数据分析功能的便携式 NIR 光谱也为识别完整的高能材料和混合物提供了绝佳的机会。NIR 能够表征法医爆炸物调查中涉及的各种化学物质,包括有机化合物和无机化合物。对实际法医案件样本的 NIR 表征令人信服地表明,该技术可以处理法医爆炸物调查中遇到的化学多样性。 1350–2550 nm NIR 反射光谱中包含的详细化学信息可用于正确识别给定类别的含能材料中的化合物,包括硝基芳族化合物、硝基胺、硝酸酯和过氧化物。此外,还可详细表征含能材料混合物,例如含有 PETN(季戊四醇四硝酸酯)和 RDX(三硝基三嗪烷)的塑料配方。所给出的结果表明,含能化合物的 NIR 光谱
含能材料和弹药用于火箭、导弹、弹药和烟火装置等任务关键型应用。这些材料是多种不同化学物质的复杂混合物,可制成粉末、粘稠糊状物、高粘稠糊状物和液体等产品,每种产品都必须按照严格的标准制造。英国火箭公司、爱好者和世界各地的其他人也受益于这些改进。RAM 还可以比传统方法快 10 倍至 100 倍地进行研磨、筛分和涂覆,但操作却足够温和,可以处理 3D 打印含能和爆炸性墨水。
• 促进海军/空军用于弹药驱动装置 (CAD) 和推进系统的固体推进剂颗粒的创新和先进制造 • 证明 AM 固体推进剂颗粒的可行性 o 开发与 AM 兼容的推进剂原料 o 探索适用于含能材料的 AM 打印机 o 提高材料质量以满足规范要求 o 制定制造协议和扩大规模程序 o 为 AM 推进剂建立基准特性测试 • 赞助商:o 海军 ManTech、制造技术项目办公室 o NAVSEA 05T o 联合项目办公室
AAP 陆军弹药厂 ADNTs 氨基二硝基甲苯异构体 AP 高氯酸铵 APE 弹药 特殊设备 BRAC 基地重新调整和关闭 °C 摄氏度 CAD 弹药驱动装置 CBF 封闭燃烧炉 CBI 清洁燃烧点火器 CDC 封闭爆轰室 cm 厘米 CO2 二氧化碳 DAVINCH 真空集成室中弹药的爆炸 DDESB 国防部爆炸物安全委员会 demil 非军事化 DMMs 废弃军用弹药 DNTs 二硝基甲苯异构体 DoD 国防部 EDS 爆炸物销毁系统 EM 含能材料 EMCW 含能材料 受污染废物 EMS 环境管理支持公司 EPA 美国环境保护署 爆炸物 D 苦味酸铵 °F 华氏度 ft 英尺 FUDS 以前使用的国防基地 FY 财政年度 g 克 HMX 1,3,5,7-八氢-1,3,5,7-四硝基四氮唑 in 英寸 ICM 改进型常规弹药 iSCWO 工业超临界水氧化 kg 千克 lb 磅 LRIP 低速率初始生产 MDAS 记录为安全的材料 MDEH 记录为爆炸危险的材料 MIDAS 弹药物品处置行动系统 m 米 mm 毫米 MPPEH 可能存在爆炸危险的材料 MTU 移动处理装置 NCP 国家石油和危险物质污染应急计划 NDMA N-亚硝基二甲胺 NEW 爆炸物净重 NOx 一氧化二氮 NPL 国家优先事项清单 NSWC 海军水面作战中心
美国陆军弹药厂 (AAP) 和装载、组装和包装 (LAP) 设施在弹药生产活动中会产生各种烟火、爆炸和推进剂 (PEP) 生产废物。这些含能材料 (EM) 废物和 EM 污染废物 (EMCW) 继续通过露天焚烧和露天爆炸 (OB/OD) 进行销毁,这是最常见的(“第一代”)EM 处置方法。焚烧是目前使用的可行的“第二代”处理方案,但监管机构和公众的接受度较差。由于担心陆军设施中 OB/OD 可能对人类健康造成风险以及对空气、土壤和水的环境影响,陆军不得不寻找和开发 OB/OD 处理的替代方案。
分子动力学反应力场已使众多材料类别的研究成为可能。与电子结构计算相比,这些力场的计算成本低,并且可以模拟数百万个原子。然而,传统力场的准确性受到其功能形式的限制,阻碍了持续改进和完善。因此,我们开发了一种基于神经网络的反应原子间势,用于预测含能材料在极端条件下的机械、热和化学响应。训练集以自动迭代方法扩展,包括各种 CHNO 材料及其在环境和冲击载荷条件下的反应。这种新势在环境和冲击载荷条件下的爆炸性能、分解产物形成和振动光谱等各种特性方面,比目前最先进的力场具有更高的准确性。
纳米热剂等纳米含能材料通常由单质金属(如铝)与金属氧化物(即具有氧键的金属,例如铁锈)组合而成;前者为燃料,后者为氧化剂。3 与“中观”传统配方和常规炸药相比,这些材料具有更高的反应速率和能量产率,但也带来了这些小尺度反应所特有的问题。最近,人们对纳米材料的物理和化学性质的认识已开始着手解决这些问题,具有更高能量产率的配方现在有望应用于微型军事系统,并有望成为下一代炸药和推进剂。这是因为它们对撞击、摩擦和冲击波的敏感度降低,能量释放和燃烧速率增加。4 这些特性使它们比目前的弹药填充物更安全。
参见第 121.1 部分 第 I 类 枪支、近战攻击武器和战斗霰弹枪 第 II 类 枪支和武器 第 III 类 弹药/军械 第 IV 类 运载火箭、导弹、弹道导弹、火箭、鱼雷、炸弹和地雷 第 V 类 爆炸物和含能材料、推进剂、燃烧剂及其成分 第 VI 类 战舰和特殊海军装备 第 VII 类 坦克和军用车辆 第 VIII 类 飞机和相关设备 第 IX 类 军事训练设备和训练 第 X 类 防护人员设备和掩体 第 XI 类 军用电子设备 第 XII 类 火控、测距仪、光学和制导及控制设备 第 XIII 类 辅助军用设备 第 XIV 类 毒物,包括化学毒物、生物毒物及相关毒物
OB/OD 单位处理的废物包括可使用和不可使用的弹药。可使用弹药包括军事训练演习和专门武器测试中使用的弹药。这些弹药包括(但不限于)点火器、弹药筒、炮弹、照明弹、火箭、烟雾弹、炸弹、推进剂和烟火。HERD 设施产生的废物包括(但不限于)研究和开发 (R & D) 实验炸药和传统炸药,例如 TNT、Comp B、Oetol 和 Tritonal。研发炸药包括 AFX 1100、AFX 453、AFX 931、PBXN 109、AFX 931-M 和 TNT /SNQ。表 II-1 列出了通用标准含能材料的基本成分,以及 HERD 生成的实验炸药。表 11-1 代表了可在埃格利夫尔 EAFB 处理的特定弹药的典型组件。