图2:大众护卫技术的硬件组件。Sciex 7500+系统的Q0区域中的添加t杆电极积极去除污染离子(紫色符号),从而导致输入仪器的样品羽流(红色和绿色符号)。T杆电极下游的离子光学元件的视觉比较显示出对基质污染的影响较小,尽管在源窗帘板上沉积了明显的残留物(左上),当时与Sciex 7500系统上的相同组件相比,没有此保护,如右下所示。
通过2D材料的远程外观远处为研究和应用打开了新的机会,克服了经典外观的某些局限性,并允许创建独立层。然而,将石墨烯作为金属氧化物远程外观的2D中间剂具有挑战性,尤其是当通过脉冲激光沉积(PLD)进行时。石墨烯层可以很容易地在通常施加的高氧气压力下氧化,并且血浆羽流的高度动力学颗粒的影响会导致严重的损害。在这项研究中,解决了这两个方面:氩气被作为惰性背景气体引入,以避免氧化并减少血浆物种对石墨烯的动力学影响。激光斑点尺寸被最小化以控制等离子体的羽流和颗粒通量。作为模型系统,钛酸锶(Sto)是在石墨烯缓冲的STO单晶上生长的准同性恋。拉曼光谱法以评估石墨烯层的2 d,g和d带指纹,并评估沉积后层中层的缺陷结构。我们的结果证明,通过降低激光斑点大小和使用高氩增压提供了对生长动力学的控制,这提供了一种关键策略,以保存PLD期间缺陷密度低的石墨烯,同时允许结构相干氧化物层的一层生长。该策略可能会概括为许多复杂氧化物的PLD远程外延,为使用广泛可访问的PLD工艺将2D材料与复杂氧化物集成开辟了道路。
胰腺癌是当今最致命的恶性肿瘤之一。2020年全球肿瘤登记数据显示,胰腺癌在恶性肿瘤中发病率位居第12位,但死亡率位居第7位(Hu等,2021)。其主要特点是进展迅速,预后极差。我国胰腺癌五年生存率仅为7.2%,是所有肿瘤类型中最低的(Zhao等,2019)。大多数患者在发现肿瘤时已诊断为局部晚期胰腺癌或远处转移,因此只有15%-20%的患者有机会接受预后较好的手术治疗(Van Veldhuisen等,2019)。 2015 年中国共诊断出 95,000 例新发胰腺癌病例,死亡 85,000 例,男性和城市地区的发病率和死亡率普遍较高( Jia et al., 2018 )。自 1997 年以来,吉西他滨一直是晚期胰腺癌的标准化疗方案。多项 III 期临床试验尝试使用吉西他滨进行化疗以改善疗效。然而,除两项研究外,大多数试验均未显示总体生存率有所改善。一项关于厄洛替尼和吉西他滨联合治疗的 III 期试验显示,与单独使用吉西他滨相比,疗效改善非常有限( Moore et al., 2007 )。此外,在 ACCORD 11 研究中,FOLFIRINOX 化疗(五氟尿嘧啶、奥沙利铂和伊立替康与亚叶酸)取得了更好的效果,与吉西他滨相比,总生存期提高了 4 个多月(从 6.8 个月到 11.1 个月)(Conroy 等人,2010 年)。然而,多药化疗的巨大毒性往往限制了它的使用,以至于一些患者拒绝它。因此,迫切需要一种更有效、毒性更小的胰腺癌治疗方式。研究得出结论,大多数胰腺癌是缺血肿瘤,血管生成不显著,因此,关于用于临床治疗的抗血管生成药物的数据很少。但有研究显示仑伐替尼治疗胰腺神经内分泌肿瘤的ORR高达44.2%,DCR为96.2%,证明了其有效性(Capdevila等,2021)。其他胰腺肿瘤无靶向联合治疗的病例也有报道,如一位55岁的胰腺癌患者(cT4N1M1),携带ERBB2突变,肿瘤突变负荷(TMB)高,出现肝肺转移,接受仑伐替尼联合帕博利珠单抗治疗,在一系列治疗失败后,获得了长达5个月的部分缓解(Chen等,2019)。一名 48 岁的转移性胰腺肺泡细胞癌患者接受仑伐替尼和信迪利单抗治疗后,肿瘤获得显著缓解,长期无进展生存期达到 > 21 个月 (Qin et al., 2021)。以上数据表明,仑伐替尼联合免疫药物可能在胰腺癌临床治疗中发挥疗效。淫羊藿素软胶囊是中国自主知识产权的原创小分子免疫调节剂,是全球首创的原创药物,已在国际上获得FDA批准。
海报論文发表林韦志杨筑安杨筑安赖欣宜易哲安陈国豪邓珮琳徐培文侯儒君胡瑄耘王乔立苏正宪苏志文黄兆清洪翊芸Wee Beng Lim 陈淯圣郭哲玮林子玮林柏廷宋泓葰柯虹瑩林政宏林奕全张馨呂宗谚林弘杰陈家维蔡奇男陈瑜轩孙德娟林子桓邱景徽陈祺蔡世国谢立伟翁颖信苏柏豪陈韦佑王升钧洪孟君胡家豪陈羽蓁林炜翔胡政嘉胡政嘉林文元许倬宪余滋雅褚祥蕴洪晨玮许嘉峻陈冠玮葉怡伶吴家森慧麗Mintra Phochanamanee 吴宗原
1 斯坦福大学 Bio-X 项目 2 斯坦福大学神经科学系 3 斯坦福大学神经外科系 4 斯坦福大学神经生物学系 5 斯坦福大学生物工程系 6 斯坦福大学计算机科学系 7 斯坦福大学吴仔神经科学研究所 8 斯坦福大学霍华德休斯医学研究所 9 斯坦福大学电气工程系 10 布朗大学工程学院和卡尼脑科学研究所 11 VA 普罗维登斯医疗系统 VA RR&D 神经修复和神经技术中心 12 哈佛医学院麻省总医院神经内科神经技术和神经恢复中心 † 通信地址:stfan@stanford.edu ‡ 同等贡献
添加到1.5毫升管中。血液:在13,000rpm处离心血液样本约1分钟(到颗粒样品)。用牙签从乙醇中取出样品,然后将其印迹到组织中。几乎干燥后,将牙签转移到1.5ml管中,然后摇晃以脱落血液。取出牙签并放入消毒剂中。拭子:乙醇干燥并放入1.5毫升管中。从交换的末端扣下来,以便盖子可以关闭。羽毛:将1-3羽羽毛的鱿鱼切成小块,在无菌玻璃板上用无菌剃刀刀片切成小块,然后再添加到管中。如果羽毛很小并且尖端上存在血斑,则可以添加羽毛。
Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Crescent Crescent Daro 和 Chris Doncy Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh 李飞飞 Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny J Hong Hong J. Jag 和 Thomas H. Jaghil I. Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Dtch Mikwall Manning Mikwall Mikwane Eric Dtch. Suraj Nair Avanika纳拉扬 迪帕克·纳拉亚南 本·纽曼 艾伦·聂 胡安·卡洛斯·尼布尔斯 哈米德·尼勒福罗尚 朱利安·尼亚尔科 吉雷·奥古特 劳雷尔·奥尔 伊莎贝尔·帕帕迪米特里奥 朴俊成 克里斯·皮耶希 伊娃·波特兰斯 克里斯托弗·波茨 阿迪蒂·拉古纳坦 罗布·赖希 任洪宇 弗里达·荣 尤瑟夫·罗哈尼 罗希亚·瑞安 罗希亚·罗 多拉·瑞安 卡梅罗 R. 佐川诗织Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan 吴家俊 吴玉怀 吴桑 谢志强 Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael 张天一 张希坤 张宇恒 张鲁恒 周凯蒂 珀西梁*1
海报論文发表林韦志杨筑安杨筑安赖欣宜易哲安陈国豪邓珮琳徐培文侯儒君胡瑄耘王乔立苏正宪苏志文黄兆清洪翊芸Wee Beng Lim 陈淯圣郭哲玮林子玮林柏廷宋泓葰柯虹瑩林政宏林奕全张馨呂宗谚林弘杰陈家维蔡奇男陈瑜轩孙德娟林子桓邱景徽陈祺蔡世国谢立伟翁颖信苏柏豪陈韦佑王升钧洪孟君胡家豪陈羽蓁林炜翔胡政嘉胡政嘉林文元许倬宪余滋雅褚祥蕴洪晨玮许嘉峻陈冠玮葉怡伶吴家森慧麗Mintra Phochanamanee 吴宗原
神经系统疾病包括大脑和神经系统疾病,是导致残疾的主要原因(Murray 等人,2013),占伤残调整生命年的 3%(Murray 等人,2012;Caliandro 等人,2020)。脑血管损伤(51%)、神经肌肉疾病(7%)、认知障碍(25%)和中枢神经系统感染(0.6%)是患有神经系统疾病的老年患者的常见症状(Bacellar 等人,2017),这将导致运动障碍(Defebvre 和 Krystkowiak,2016;Harmon 等人,2019;Reich 和 Savitt,2019)。运动障碍会严重影响老年人的日常活动,尤其是行走和平衡障碍(Osoba 等人,2019)。昂贵的医疗费用和纵向干预的额外神经病学资源需求给家庭和社会带来了负担。帕金森病 (PD)、多发性硬化症 (MS) 和中风是与运动障碍相关的常见年龄相关性神经系统疾病 (Bonilauri 等人,2020 年)。中风、PD 和 MS 患者的步速、步长、步宽、步频、步态变异性、站立时间等异常运动表现已被研究 (Hausdorff 等人,2007 年;Nutt 等人,2011 年;Socie and Sosnoff,2013 年;Chisholm 等人,2014 年;Maidan 等人,2015 年;Belluscio 等人,2019 年)。然而,调查还不够。运动障碍是指对普通肌肉运动控制的受损,这不仅与肌肉骨骼或神经系统的退化或损伤有关,还与它们之间的复杂联系有关。运动表现是肌肉骨骼系统的外在表现之一,大脑皮层活动是中枢神经系统的外在表现之一。如果能分析患者运动过程中运动表现和皮层活动的变化和关系,将有助于探究运动障碍的机制和神经系统疾病患者的有效康复方法。然而,在实际的人体运动过程中测试大脑皮层活动并不容易。功能性近红外光谱 (fNIRS)、便携式脑电图等技术的最新进展使得人们可以在自然环境中自由地实时研究人体运动过程中的大脑功能。 fNIRS 是一种基于神经血管耦合和光谱理论的非侵入性、可重复、可靠的功能性神经成像技术(Villringer and Chance,1997;Leff et al.,2011)。大脑神经活动的增加导致氧代谢增加(Liao et al.,2013;Scholkmann et al.,2014;Pinti et al.,2020),导致氧合血红蛋白和脱氧血红蛋白浓度的降低和升高(Lindauer et al.,2010;Liao et al.,2013;Scholkmann et al.,2014)。fNIRS的结果比便携式脑电图具有更高的空间分辨率,与功能磁共振成像BOLD测量值相关性最高(Strangman等,2002)。此外,fNIRS已用于检测健康或不健康人群在步行、转身或平衡干预过程中单任务或双任务下的前额皮质(PFC)、初级皮质(M1)、运动前皮质(PMC)、辅助运动区(SMA)和感觉运动皮质(SMC)的皮质活动(Mihara等,2007;Al-Yahya等,2018;Stuart等,2018;Pelicioni等,2022),而与fNIRS相比,基于神经元神经电信号的便携式脑电图很少用于双任务步态活动。PFC参与规划、