使用自动燃烧的溶胶 - 凝胶方法合成镍铝(NIAL 2 O 4)纳米颗粒。制备的纳米颗粒分为四个部分,并在700、900、1100和1300℃时钙化,并进行了本研究。使用粉末X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDS),傅立叶变换和红外(FT-IR)光谱镜(FT-IR)光谱和UV-VIS光谱技术来表征吸收的纳米颗粒。X射线衍射模式证实了尖晶石结构和FD3M空间组。Scherrer公式用于计算结晶石尺寸,并在5.78至20.55 nm的范围内发现,而晶格参数的范围为8.039至8.342Å。在142.80至187.37 nm的范围内发现平均晶粒尺寸,而间间距的范围为2.100至2.479Å。FTIR光谱显示在400至3450 cm -1的范围内显示了六个吸收带,并确认了尖晶石结构。光条间隙(E G)随钙化温度降低,并在4.2129-4.3115EV范围内发现。关键字:镍铝制纳米颗粒; Sol-Gel自动燃烧法;钙化温度;结晶石尺寸;粒度;元素分析; IR和UV-VIS光谱PACS:75.50.GG,61.05.cp,68.37.hk,78.40.fy,33.20.ea,42.70.qs
光合作用是由太阳的单个光子1-3引发的,作为弱光源,在叶绿素吸收带1中,每秒最多每秒几十个光子每秒传递几十个光子。在过去的40年中,在过去的40年中,许多实验和理论工作探索了在光合作用中吸收光合作用的事件,从而吸收了强烈的超短激光脉冲2-15。在这里,我们使用单个光子在环境条件下激发了紫色细菌的紫obacter sphaeroides的轻度收获2(LH2)复合物,分别包含9和18个细菌氯植物分子的B800和B850环。B800环的激发在大约0.7)ps中导致电子能量转移到B850环,然后在约100-FS的时间尺度上快速B850至B850 Energy Transfers在850–875时(参考)NM(参考)。16–19)。使用宣传的单光子源20,21以及一致计数,我们建立了B800激发和B850 Fuoresence发射的时间相关函数,并证明这两个事件都涉及单个光子。我们还表明,每个检测到的插入光子光子的概率分布支持这样一种观点,即吸收后单个光子可以驱动随后的能量传递和实现发射,因此,通过扩展,光合作用的主要电荷分离。一个分析随机模型和蒙特卡洛数值模型捕获了数据,进一步缔结了单个光子的吸收与自然光收获复合物中单个光子的发射相关。
本研究确定二氧化碳水平上升与全球变暖之间是否存在相关性。历史数据从跨越5亿年的三个不同时间段进行了审查。它表明曲线和趋势过于不同,无法建立联系。从CO 2 /TEMP比率进行观察表明,CO 2和温度在相反的方向上移动42%。许多比率显示为零或接近零值,反映出缺乏响应。的比率的87%显示为负值或接近零值,这极大地否定了相关性。红外光谱显示温室气体在11.67 µm至9.1 µm之间的吸收带非常低,这是一个称为红外大气窗的区域。大多数温室气体吸收了该区域内的小红外线。,该区域是地球表面排放几乎所有红外辐射的地方。即使有微吸光度,水蒸气也会捕获最新的红外辐射。比CO 2的效果比甲烷高84倍,比甲烷高4.47亿倍,比臭氧多452千倍,比一氧化二氮高230万倍。气候变化的政府间小组(IPCC)和美国EPA排除了水蒸气,因为它与人造活动无关。他们报告说,水蒸气和云只是CO 2的反馈机制。云反映了来自太阳的辐射。北半球比南半球的温暖2.7˚F。从1982年到2018年,世界云覆盖率下降了4.1%。计算表明,这可能是2.7˚F的2.4˚F。研究表明,最近温度的大部分升高(89.9%)是由于云较少。关键字
依赖温度的生物生产力控制硅酸盐风化,从而扩展了地球的潜在宜居时间。模型和理论考虑表明,地球样系外行星上的失控温室通常伴随着大气中的H 2 O和CO 2的急剧增加,这可能会随着即将到来的空间望远镜的生成而观察到。如果活性生物圈与地球类似地扩展了外部行星的可居住时间潘,则观察可居住区内边缘附近的系外行星的大气光谱可以使人深入了解地球是否居住。在这里,我们为地球状停滞的行星探索了这个想法。我们发现,尽管地幔减少,但表面生物圈将行星的可居住时间延伸约1 Gyr,对于更多的氧化条件,生物学上增强的风化速率越来越多,通过将CO 2的CO 2的供应率提高到大气中。从观察上,在宜居区的内边缘附近的大气CO 2中所产生的差异在具有活跃风化的生物行星和经历了失控的温室的生物行星之间可以区分。在有效的水文循环中,提高的生物生产力也导致JWST可观察到的CH 4生物签名。随着行星无法居住,H 2 O红外吸收带占主导地位,但是4.3- µm CO 2带仍然是CO 2丰度的清晰窗口。总而言之,虽然生命对碳酸盐 - 硅酸盐循环的作用在类似地球的停滞范围的大气谱中留下了记录,但尤其需要未来的工作才能确定构造状态和外部球星的组成,并推动下一代空间望远镜的发展。
值得注意的是,除了激子基态漂白剂外,界面三重能量转移的每种化合物都在能量上有利,在较长的波长(大约450 - 650 nm)以外的较长波长处表现出广泛的光诱导吸收(PIA)特征。在图2 B中为选定样品显示了此波长范围的扩展视图。对于每种富含溴化物的化合物,广泛的PIA特征是长期寿命的,并且在瞬态吸收设置订立的5 ns窗口范围内不会完全衰减。然而,纯碘化物化合物(1,5 NDA)PBI 4的瞬态光谱仅包含激子漂白剂,并且在更长的波长下没有明显的PIA。至少在定性上,这些模式表明长寿的PIA可能与萘三胞胎物种有关。该分配与以前的微秒瞬时吸收研究一致,该研究是根据萘的浓缩,三联敏化溶液进行的,其中作者在450 - 650 Nm区域中观察到与单性链接的450 - 650 NM区域中具有与单烯烯型Naphthalene Treepemere excimerersecimerer的450 - 650 Nm区域的广泛交流荷兰转移吸收带。28在含有thieno [3,2- b]硫烯-2噻吩-2甲基铵阳离子(结构上与萘)中的RP 2D钙钛矿中也观察到了类似的广泛PIA特征,并分配给有机分子的三重态兴奋。5基于我们的实验观察结果以及与文献中的示例的这些比较,我们认为450 - 650 nm探针范围内的宽阔而长的PIA与萘三胞胎物种有关。
摘要:本研究旨在通过采用X射线衍射(XRD),UV-VIS光谱,拉曼光谱和傅立叶光谱和傅立叶变换光谱(FTIR)技术来研究铜掺杂锌铁氧体(ZNFE 2 O 4:CU)的结构和光学特性。使用固态反应技术,创建了具有X = 0、0.25、0.5、0.75、1的样品的Cu X Zn 1-X Fe 2 O 4。X射线分析验证了所有浓度的单相立方尖晶石结构的产生。铜铁氧体的X射线衍射模式显示出具有Jahn Teller四方变形的纯尖晶石结构。根据Rietveld的改进,所有X浓度的Cuxzn 1 -XFE 2 O 4对应于通常的尖晶石结构。随着铜的浓度升高,晶体尺寸减小,除了Cu 0.5 Zn 0.5 fe 2 O 4,与所有铜相比,这一点很高。晶格参数和X射线密度变化。掺杂铜锌铁晶的带隙从1.825 eV增加到2.776EV。红外和拉曼光谱也证实了样品中的尖晶石相。使用反应的拉曼光谱来计算五种拉曼模式的位置以及强度变化。使用反价vol的拉曼峰推断出A和B位点中的阳离子排列。在拉曼光谱中,晶体结构比在室温下更可见。ft-ir分析验证了尖晶石结构,在630-540 cm -1和525-390 cm -1处揭示了对较高和较低频率的吸收带。铜掺杂有望影响锌铁锌的晶体学结构和光学行为,并有可能增强其在各种技术领域的应用。
甲烷(CH 4)是第二大最丰富的人为温室气体,贡献了全球变暖。在过去20年中,其全球变暖潜力估计是二氧化碳(CO 2)的80倍。要获得碳排放量为零的全球净净值,重要的是监视和管理全球甲烷排放的点源。我们介绍了第一个称为纳尔沙(Narsha)的第一个韩国太空传播甲烷监测平台开发项目。与NARA太空技术,首尔国立大学的气候实验室以及韩国天文学和太空科学研究所合作,Narsha项目旨在在2026年之前开发和推出标准微卫星。微卫星系统,称为韩国甲烷监测微卫星(K3M),设计为与16U立方体标准兼容,并配备了两个光学有效载荷。主要有效载荷是在短波红外(SWIR)范围内运行的高光谱成像仪,光谱分辨率在弱甲烷吸收带(1625-1670 nm)内的光谱分辨率高于1 nm,地面采样距离(GSD)在500 km的高度下为30米。辅助有效载荷VIS/NIR相机与高光谱成像仪集成在一起,以识别其场景中的云。两个有效载荷在500公里的高度上具有大于10公里的宽度,从而实现了局部水平的监视。敏捷和精确的态度控制系统可以在任务过程中改善SNR。此外,车载处理能力和高速通信有助于传递大量的原始数据,对于检测和定量甲烷李子所必需。该提出的系统将作为LEO星座运行,以获得具有高空间和时间分辨率的全局甲烷点源数据。该数据将极大地有助于跟踪和量化全球甲烷排放,并制定一种用于全球变暖的策略。在这项研究中,我们介绍了Narsha项目,并概述了微卫星系统的设计和用于太空播甲烷监测的星座。
微塑料 (MP) 是一种较小的塑料,在水生环境中普遍存在。先前的研究报告称,从公共市场和养虾场收集的虾类的胃肠道中存在 MP。有报道称,包括潜在致病菌在内的生物膜群落可以附着在 MP 表面。MP 摄入后会带来重大的健康和经济风险,包括可能接触副溶血弧菌 (Vp)——一种在 MP 表面高浓度发现的显著虾病原体——增加虾的疾病风险并可能进入人类食物链。在这项研究中,对来自菲律宾布拉坎省虾场和不同湿货市场的凡纳滨对虾进行了 MP 污染测试以及 Vp 在 MP 表面的附着和定植测试,并进行了体外测试。分离的 MP 经过化学消化和浮选分离,然后用立体显微镜成像并根据其形态特征进行表征。分离的假定 MP 经常以不规则形状的碎片形式观察到。衰减全反射-傅里叶变换红外光谱结果证实,只有来自 Hagonoy 和 Meycauayan 湿货市场的南美白对虾获得的 MP 才会表现出与聚乙烯 (PE) 基塑料典型的 CH 拉伸振动相对应的特征吸收带。在一组原始的 PE 基塑料(一个表面较光滑(PE1),一个表面较粗糙(PE2))上观察到 Vp 的附着。扫描电子显微镜图像证实了 Vp 附着在这些 MP 表面,并显示最早在孵育 1 小时后就可以看到定植。PE2 导致粘附细菌的数量高于 PE1,这表明表面粗糙度在 MP 上的细菌定植中起着重要作用。然而,观察到的这种差异并不具有统计学意义,这表明还应考虑温度、pH、盐度和营养物质可用性等其他参数。这项研究表明,采样地点的虾受到了 MPs 的污染,并且基于 PE 的 MPs 可以成为 Vp 的定殖场所。
光学生物传感器具有直接、实时和无标记生物分子检测的巨大优势。因此,由于它们具有高特异性和灵敏度、紧凑性和成本效益,因此已广泛应用于医疗保健、食品质量控制和药物发现领域。[1,2] 表面等离子体共振 (SPR) 技术一直是终端用户中占主导地位的技术,目前在光学生物传感器市场中占有最大份额。在传统的 SPR 系统中,来自薄金膜的高度受限等离子体场用于通过可见光折射测量来监测生物识别事件(即生物受体和目标分析物结合后引起的折射率变化)。[3] 同时,中红外 (mid-IR) 光谱在研究发展中引起了广泛关注,因为它显示出对生物分析物的联合分子特异性识别和定量的有希望的机会。中红外窗口范围在 2 至 20 µ m 之间,具有分子独特的振动吸收带,可通过光吸收进行特异性探测。[4,5] 因此,中红外光谱测量可以揭示生物分析物的分子指纹,提供有关其分子成分和结构组成的信息。然而,主要的挑战仍然在于克服 µ m 级红外波长和 nm 级生物分子之间的弱光学相互作用。表面增强红外吸收 (SEIRA) 光谱法已被提出通过采用支持高度亚波长表面结合光学模式的纳米结构超表面来克服较弱的光分子相互作用。[6] 最成熟的 SEIRA 平台基于支持局部 SPR (LSPR) 的金纳米结构,已证明生物分子检测(例如蛋白质和 DNA)可将 SEIRA 信号增强 10 到 100 倍。 [7–10] 尽管最近的 SEIRA 发展获得了更好的光学灵敏度(例如,采用金属-绝缘体-金属结构的完美吸收体设计),[11,12] 但金属基超表面由于缺乏光谱选择性和相对较差的红外场限制(典型衰减长度 ≈ 10 2 d )而受到限制。[13]
使用十二烷基硫酸钠(SDS)和高纯度分析级硝酸盐,通过化学共沉淀法在控制温度下合成磁钴铁素纳米颗粒(NP)。合成的材料的特征是研究的X射线衍射(XRD),扫描电子显微镜(SEM)和傅立叶变换红外辐射(FTIR)技术。样品在850 0 c烧结5H。X射线衍射分析证实了用公式AB 2 O 4的单相立方尖晶石结构的形成。在四面体(A位点)和八面体(a-o,b-o)上的晶格常数,X射线密度,结晶石大小,位置半径(R a,r b),键长(A-O,B-O)上的四面体(A位点)和八面体(b site)在样品中计算出来。晶格常数和结晶石尺寸分别为8.361 A 0和27 nm。FTIR光谱在四面体和八面体部位分别在400 cm -1和800 cm -1的范围内显示了两个强吸收带。SEM研究表明,平均晶粒尺寸为0.25 µm,几乎是球形形状的微结构钴铁氧体纳米粒子。关键字:化学合成,纳米颗粒,结晶石大小,XRD,FT-IR,SEM。1。简介:铁磁性材料含有一种称为铁氧体的氧化铁。铁素体具有一个立方尖晶石相,具有通用式AB 2 O 4,其中A是二价金属离子,例如Ni,Zn,Mn,Mn,Cu,Ca,Ca,Co,Mg,Mg和B是Fe,Sm,sm,sm,gd,la,ce,等等的三价金属离子。该结构中氧离子的排列提供了四面体(a)和八面体(b)位点。许多阳离子优先占据了其中一个位置。居住在8个四面体和16个八面体位置的阳离子在铁氧体的独特特征中具有重要作用。由于现代社会不断增长的需求,铁矿的微波特性现在需求很高。钴铁矿是微波工业中最常使用的材料,因为它们的高化学稳定性,机械品质,低成本和易于制造。他们的一般化学公式(AB 2 O 4)具有逆尖晶石结构,其一半占据了四面体A位点的铁离子,其余的以及钴离子,分布在八面体B点上。钴