摘要:近年来,半导体封装结构不断薄型化、复杂化,随着厚度减小,因材料不匹配引起的界面剥离现象会进一步增加,因此界面的可靠性是工业领域中的关键问题。尤其在半导体封装中广泛使用的聚合物受温度和湿度的影响较大。因此,本研究通过有限元分析对不同温度条件下封装结构界面的剥离情况进行预测,考虑吸湿和解吸的水分。通过吸湿试验获得了材料的扩散率和饱和含水量等性能。通过TMA和TGA分析了每种材料吸湿后的吸湿膨胀系数。进行微剪切试验,评估考虑湿度影响下各界面在不同温度下的黏附强度。进行了考虑温度和吸湿变形的界面剥离有限元分析。因此,考虑到回流过程中的原位水分解吸和温度行为,成功预测了界面分层。
b'abstract:钠离子电池(SIBS)是一种有前途的网格级存储技术,因为钠的丰度和低成本。为SIBS开发的开发是必须影响电池寿命和容量的,因此必须开发新的SIBS。目前,六氟磷酸钠(NAPF 6)用作基准盐,但具有高度吸湿性并产生有毒的HF。This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B- (hfip) 4 ] \xc2\xb7 DME (hfip = hexafluoroisopropyloxy, O i Pr F ) and Na[B(pp) 2 ] (pp = perfluorinated pinacolato, O 2 C 2 - (CF 3 ) 4 ) have出色的电化学性能。[B(pp)2]阴离子也表现出对空气和水的高耐受性。这两种电解质都比常规使用的NAPF 6具有更稳定的电极 - 电解质界面,如阻抗光谱和环状伏安法所示。此外,它们具有更大的循环稳定性和与NAPF 6的SIBS相当的能力,如商业袋细胞所示。
目前,已经设计了多种储热技术,以匹配系统。1,2这些技术通常可分为三大类:显热储热、潜热储热和热化学储热。7-11但前两种技术更容易损失守恒的热能,因此不适合长期储热。12在这些技术中,热化学储热利用可逆化学反应释放和储存热量,由于其良好的储热密度,热能利用效率最高。13因此,可以研究大量材料用于广泛工作温度范围内的热化学储热。12-19Kubota等人9,20将多孔碳和吸湿材料与氢氧化锂(LiOH)制成低温储能材料,储热性能明显提高。这项研究证明
现代气体探测器的读出板要求非常精确: 所需精度≲100𝜇𝑚 FR4 是 PCB 的标准基材,具有吸湿性 FR4 在暴露于潮湿环境中时会膨胀 对于 Micromegas 中使用的大尺寸电路板,吸湿性
摘要 — 大多数电路板都在可能暴露于蒸汽或液体湿气的环境中工作。由于低成本电路板很容易吸收水分,这会导致性能问题、可靠性问题,甚至灾难性故障。然而,在电路板完全失效之前很难检测出是否发生了吸湿。为了缓解这个问题,在印刷电路板 (PCB) 技术中实现了一种边缘场电容器,并通过随之而来的电容增加来检测电路板中的吸湿情况。制造了原型传感器并浸泡了 42 天,结果显示电容增加了 14% 到 29%。这种传感器技术可以轻松添加到电路板设计中,因为它们使用了商用 PCB 构造中使用的标准材料和制造工艺。
芯吸和泵送 多年来,多孔金属已演变成许多难以解决的工艺问题。其中之一就是泵送和/或芯吸的使用。Mott 的多孔烧结金属是从航空航天到消费用途的许多应用的完美选择。 芯吸 具有非常均匀孔隙率的多孔金属结构将通过多孔金属结构将液体从流体储存器泵送液体并将液体施加到所需位置。由于均匀的孔分布和孔径,毛细管粘附发生在多孔结构内。 优点 无活动部件 长免维护使用寿命 清洁度 提供均匀的流动 连续操作 高强度、抗冲击 耐高温 过滤,为应用提供清洁流体 烧结金属用于液体冷却系统中的泵 多孔金属也可用于封闭的再循环系统。多孔材料在此系统中充当主泵。该系统的工作原理与芯吸相同,不同之处在于系统是完全封闭的。该系统的泵头压力可高达 30” H2O,具有这种性能的多孔金属适用于各种冷却应用。冷却应用航空航天卫星宇航员太空服冷却微电子电力电子开关整流器无功元件变压器