– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
1 2290.185185 2 2290.555556 3 2290.925926 8400.061729 4 2291.296296 8401.419752 5 2110.243056 2291.666667 8402.777779 6 2110.584105 2292.037037 8404.135802 7 2110.925154 2292.407407 8405.493825 8 2111.266204 2292.777778 8406.851853 9 2111.607253 2293.148148 8408.209877 10 2111.948303 2293.518519 8409.567903 11 2112.289352 2293.888889 8410.925927 12 2112.630401 2294.259259 8412.283950 13 2112.971451 2294.629630 8413.641977 14 2113.312500 2295.000000 8415.000000 15 2113.653549 2295.370370 8416.358023 16 2113.994599 2295.740741 8417.716050 17 2114.335648 2296.111111 8419.074073 18 2114.676697 2296.481481 8420.432097 19 2115.017747 2296.851852 8421.790123 20 2115.358796 2297.222222 8423.148147 21 2115.699846 2297.592593 8424.506175 22 2116.040895 2297.962963 8425.864198 23 2116.381944 2298.333333 8427.222221 24 2116.722994 2298.703704 8428.580248 25 2117.064043 2299.074074 8429.938271 26 2117.405092 2299.444444 8431.296295 27 2117.746142 2299.814815 8432.654321 28 2118.087191 8434.012345 29 2118.428241 8435.370372 30 2118.769290 8436.728395 31 2119.110339 8438.086418 32 2119.451389 8439.444446 33 2119.792438 8440.802469 34 8442.160493 35 8443.518520 36 8444.876543 37 8446.234570 38 8447.592593 39 8448.950616
书籍章节 法国电力线通信窄带噪声和信道容量的表征 Imène Elfeki 1,2、Sébastien Jacques 1 *、Ismail Aouichak 1、Thierry Doligez 2、Yves Raingeaud 1 和 Jean-Charles Le Bunetel 1 1 法国图尔大学材料、微电子、声学和纳米技术研究组 2 法国图尔应用数字实验室 (LAN),Node Park Touraine *通讯作者:Sébastien Jacques,图尔大学材料、微电子、声学和纳米技术研究组,37000 图尔,法国 2020 年 8 月 12 日出版 本书章节是 Sébastien Jacques 等人发表的文章的再版。 2018 年 11 月在 Energies 上发表的论文。 (Elfeki, I.;Jacques, S.;Aouichak, I.;Doligez, T.;Raingeaud, Y.;Le Bunetel, J.-C. 法国电力线通信窄带噪声和信道容量特性。Energies 2018,11,3022。) 如何引用本书章节:Imène Elfeki、Sébastien Jacques、Ismail Aouichak、Thierry Doligez、Yves Raingeaud、Jean-Charles Le Bunetel。法国电力线通信窄带噪声和信道容量特性。在:Phattara Khumprom、Mladen Bošnjaković 编辑。能源研究进展。海得拉巴,印度:Vide Leaf。 2020。© 作者 2020。本文根据知识共享署名 4.0 国际许可证(http://creativecommons.org/licenses/by/4.0/)分发,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当引用。
摘要 | 信息论涉及信息源的有效表示,并为通过信道可靠地传输的信息量提供基本限制。这些源和信道通常是经典的,即由标准概率分布表示。量子信息论将其提升到一个新的水平,我们允许源和信道是量子的。从量子态的表示到量子信道上的通信,该理论不仅从本质上概括了经典的信息论方法,而且还解释了叠加、纠缠、干涉等量子效应。在本文中,我们将回顾并重点介绍无限维量子信道的信息论分析。需要无限维来模拟当今实用网络、分布式量子通信和量子互联网中无处不在的量子光信道。与有限维信道相比,无限维引入了一些独特的问题,并且尚未在文献中从量子信息理论的角度进行深入探讨。对于这些信道,我们提供了基本概念和最先进的信道容量结果。为了使本文自成体系,我们还回顾了有限维结果。
产品说明 VORTEXx 收发器专为空中、地面和海上使用而设计,可提供实时全动态视频和高带宽吞吐量,用于态势感知、VoIP、定位、监视、数据中继、广域无线网络、车队监视和远程操作。VORTEXx 可以同时传输和接收数字数据。VORTEXx 可以使用一个或两个不同频段的两个不同通道同时将通用数据传输到多个平台。VORTEXx 能够从一个源接收一个或两个不同频段的两个不同通道。这种频段和信道多样性提供了链路冗余、更好的接收能力以及对平台遮挡、多径干扰、视线阻塞和射频干扰的弹性。
产品描述 VORTEXi 收发器专为空中、地面和海上使用而设计,可提供实时全动态视频和其他数据,用于态势感知、目标瞄准、战斗损伤评估 (BDA)、监视、中继、护航监视行动和其他需要目视目标的情况。VORTEXi 可以同时传输和接收模拟和/或数字数据。VORTEXi 可与 ROVER®、CDL、几乎所有 UAV、瞄准吊舱和其他波形互操作。VORTEXi 可以使用一个或两个不同频段的两个不同通道同时将通用数据传输到多个平台。VORTEXi 能够从一个源在一个或两个不同频段的两个不同通道上接收数据。该频段和信道分集提供链路冗余、更好的接收效果以及对平台遮蔽、多径干扰、视距阻塞和射频干扰的弹性。
产品描述 VORTEXi 收发器专为空中、地面和海上使用而设计,可提供实时全动态视频和其他数据,用于态势感知、目标瞄准、战斗损伤评估 (BDA)、监视、中继、护航监视行动和其他需要目视目标的情况。VORTEXi 可以同时传输和接收模拟和/或数字数据。VORTEXi 可与 ROVER®、CDL、几乎所有 UAV、瞄准吊舱和其他波形互操作。VORTEXi 可以使用一个或两个不同频段的两个不同通道同时将通用数据传输到多个平台。VORTEXi 能够从一个源在一个或两个不同频段的两个不同通道上接收数据。该频段和信道分集提供链路冗余、更好的接收效果以及对平台遮蔽、多径干扰、视距阻塞和射频干扰的弹性。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是实现长距离光纤网络的最有前途的技术之一,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交错来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
最近,量子态和信道的各种非经典特性已被描述为它们在量子信息任务中比其经典对应物提供的优势。这种优势通常可以证明是定量的,因为更多的量子资源会在相应的任务中带来更好的表现。到目前为止,这些特征仅在有限维环境中建立,因此忽略了连续变量系统中的中心资源,例如纠缠和非经典状态以及纠缠破坏和广播信道。在本文中,我们提出了一个完全通用的无限维系统中资源量化框架。该框架适用于广泛的资源,唯一的前提是经典随机性不能创造资源,并且无资源对象在适当的意义上形成一个封闭集。由于后者可能难以为连续变量系统的抽象拓扑建立,我们提供了不参考拓扑的条件放宽。这涵盖了上述资源和其他各种资源,因此将它们解释为所谓的输入输出游戏中的性能增强。