1 加州大学伯克利分校分子与细胞生物学系;美国加利福尼亚州伯克利市;2 加州大学创新基因组学研究所;3 加州大学伯克利分校加州定量生物科学研究所 (QB3);4 加州大学伯克利分校霍华德休斯医学研究所;美国加利福尼亚州伯克利市;5 加州大学伯克利分校地球与行星科学系;6 加州大学洛杉矶分校分子、细胞和发育生物学系;7 加州大学伯克利分校计算生物学中心;8 加州大学洛杉矶分校霍华德休斯医学研究所;9 格拉德斯通研究所;美国加利福尼亚州旧金山市;10 格拉德斯通-加州大学旧金山分校基因组免疫学研究所; 11 劳伦斯伯克利国家实验室分子生物物理和综合生物成像部;美国加利福尼亚州伯克利市;12 加利福尼亚大学伯克利分校化学系;美国加利福尼亚州伯克利市;
真核翻译起始因子 4E (EIF4E) 是许多植物物种中马铃薯病毒感染的已知易感因子。大麦黄花叶病毒病是由大麦黄花叶病毒 (BaYMV) 和大麦温和花叶病毒 (BaMMV) 引起的,可导致冬大麦产量损失高达 50%。秋季,幼小的大麦植株的根部被土传的根瘤寄生虫 Polymyxa graminis L. 感染,该寄生虫是病毒载体。病毒建立并系统性扩散到植物上部后,叶子上首先出现黄色花叶。在植物进一步发育的过程中,该病会导致叶子坏死,并且更易受霜冻伤害。由于 HvEIF4E 基因的 rym4 和 rym5 等位基因变体,超过三分之二的欧洲冬大麦品种对 BaYMV 和 BaMMV 具有抗性。然而,几种 BaYMV 和 BaMMV 菌株已经克服了 rym4 和 rym5 介导的抗性。因此,大麦育种需要新的抗性等位基因。因此,我们在 BaMMV/BaYMV 易感冬大麦品种“Igri”中通过 Cas9 内切酶对 EIF4E 基因进行了定向诱变。产生了小插入,导致翻译阅读框发生移位,从而导致 EIF4E 功能丧失。突变发生在原代突变体中已经处于纯合状态。它们的后代被证明总是纯合的并且完全抵抗 BaMMV 的机械接种。EIF4E 敲除植物表现出正常的生长习性并产生谷物,但产量受损。
苏打湖是具有高碱度和盐分的独特聚会环境,尽管具有极端的性质,但仍支持各种微生物群落。在这项研究中,使用Amplicon测序确定了三个苏打湖,阿比亚塔湖,Chitu湖和沙拉湖的样品中的原核和真核微生物多样性。与培养的分析显示,所有三个苏打湖中原核和真核微生物群落的多样性都比以前报道的要高。通过非依赖性的扩增子测序发现了总共3,603个原核生物和898个真核操作分类单元(OTU),而只有134个细菌Otus仅通过丰富的培养物获得3%。这表明在实验室条件下只能培养这些栖息地的微生物的一部分。在三个苏打湖中,来自奇图湖的样品显示出最高的原核多样性,而沙拉湖的样品显示出最低的多样性。Pseudomonadota ( Halomonas ), Bacillota ( Bacillus , Clostridia ), Bacteroidota ( Bacteroides ), Euryarchaeota ( Thermoplasmata , Thermococci , Methanomicrobia , Halobacter ), and Nanoarchaeota ( Woesearchaeia ) were the most common prokaryotic microbes in the three soda lakes.鉴定出高度多样性的真核生物,主要由Ascomycota和basidiomycota代表。与其他两个湖泊相比,在阿比亚塔湖(Lake Abijata)发现了更多的真核OTU。本研究表明,这些独特的栖息地具有多种微生物遗传资源,并可能在生物技术应用中使用,应通过功能性宏基因组学进一步研究。
•英国外科医生以其对预防和治愈伤口感染的防腐治疗的显着贡献而闻名。•Lister得出结论,伤口感染也是由于微生物引起的。•在1867年,他开发了一种抗药性手术系统,旨在通过苯酚的应用来预防微生物。•他还设计了一种方法,通过将碳酸的细雾喷在空气中,从而产生抗菌环境,从而破坏手术剧院中的微生物。•他首先通过使用当今仍在使用的物理和化学剂来引入无菌技术来控制微生物。•由于这一值得注意的贡献,约瑟夫·李斯特(Joseph Lister)被称为杀菌手术的父亲。亚历山大·弗莱明爵士(苏格兰医师和细菌学家):发现
(i) 断言 (A):人工智能中的监督学习使用标记数据进行训练。推理 (R):无监督学习需要未标记的数据并识别其中的模式。(a) A 和 R 均为真,且 R 是 A 的正确解释。(b) A 和 R 均为真,但 R 不是 A 的正确解释。(c) A 为真但 R 为假。(d) A 为假但 R 为真。
2.1 真核信使 RNA 测序 ................................................................................................ 5 2.2 转录组测序 .............................................................................................................. 5 2.3 真核小 RNA 测序 ................................................................................................ 6 2.4 真核环状 RNA 测序 ............................................................................................. 6 2.5 真核全转录组测序 ............................................................................................. 6 2.6 长读转录组测序 ............................................................................................. 6 2.7 单细胞转录组测序 ............................................................................................. 7 3. 表观遗传学测序 ............................................................................................. 8 4. 预制文库测序 ............................................................................................. 9
摘要 原核生物通过横向基因转移 (LGT) 从环境中获取基因。环境 DNA 的重组可以防止有害突变的积累,但第一批真核生物放弃了 LGT,转而选择有性生殖。我们在此开发了一个单倍体群体经历 LGT 的理论模型,其中包括两个新参数,即基因组大小和重组长度,这两个参数被以前的理论模型忽略了。真核生物的复杂性与更大的基因组有关,我们证明 LGT 的好处会随着基因组大小的增加而迅速下降。只有通过增加重组长度(与基因组大小相同的数量级)才能抵抗较大基因组的退化——就像在减数分裂中发生的那样。我们的研究结果可以解释在早期真核生物进化过程中对有性细胞融合和相互重组进化的强大选择压力——减数分裂性别的起源。
北冰洋(AO)环境恶劣,温度低、冰盖大、海冰周期性冻结和融化,为微生物提供了多样化的栖息地。前期研究主要基于环境DNA对北冰洋上层水体或海冰中的微真核生物群落进行研究,而对北冰洋多样化环境中活跃微真核生物的组成成分则知之甚少。本研究通过对共提取的DNA和RNA进行高通量测序,对北冰洋从雪冰到1670 m深度海水范围内的微真核生物群落进行了垂直评估。与DNA提取物相比,RNA提取物能更准确地描述微真核生物群落结构和类群间相关性,对环境条件的反应也更为敏感。使用RNA:DNA比率作为主要分类群相对活性的代表,确定了主要微真核生物群落沿深度方向的代谢活性。共现网络分析表明,深海中的 Syndiniales 和甲藻/纤毛虫之间的寄生关系可能很重要。这项研究增加了我们对活跃微真核生物群落多样性的认识,并强调了使用基于 RNA 的测序而非基于 DNA 的测序来研究微真核生物群落与微真核生物对 AO 环境变量的反应之间的关系的重要性。
真核生物coi M 13 f_lco 1490 (M 13 f)ggtcaaatcatattgg 1 658 bp又は815bp m 13 r_hco 2198 m 13 r_hcoout 13 R(R)TAACTTCAGGGGTGTGTGICCAAAAAAAAAAATCA (M 13 R)GTAATATATSGRTGDGCTC 1 2