菲洛巴氏菌(Filobasidium)属,是菲洛巴·西迪亚斯(Filoba Sidiales)的家族丝虫科的成员,是一组具有许多代表性物种的基本菌。迄今为止,已经在菲洛巴氏菌中描述并接受了14种。尽管最近发表了一些来自中国的新发现,但丝状岛的物种多样性仍未完全理解。样品,并检查了该属的物种多样性。三个新物种,即F. pseudomali sp。nov。 ,F。Castaneaesp。nov。和F. Qingyuanense sp。nov。基于内部转录间隔物(ITS)的系统发育分析以及大亚基(LSU)rRNA基因的D1/D2结构域以及其单独的序列与表型特征相连。提供了完整的描述,插图,与类似物种的比较以及系统发育分析。这项研究的发现实质上丰富了中国菲洛巴氏菌的生物多样性。
抽象的正叶病毒是节肢动物传播的单链RNA病毒,导致人类轻度至严重疾病,每年影响数百万的人,目前没有抗病毒药。该病毒属包括诸如tick传播脑炎病毒(TBEV),西尼罗河病毒(WNV)和Zika病毒(ZIKV)等病毒。正常非洲病毒具有自己的病毒蛋白,但是与其他病毒一样,它们也招募并利用几种细胞蛋白来实现其生命周期。尽管已经确定或表征了其中一些宿主因素,但其中大多数仍然不知道。在本文中,我使用了不同的工具来识别和表征与正常非病毒感染有关的新型蛋白质。了解细胞蛋白在病毒生命周期中的功能对于理解病毒的疾病机制和开发针对这些病毒的抗病毒药物很重要。在第一部分中,我们实施了蛋白质组学噬菌体显示(PROP -PD),以识别病毒和细胞蛋白之间的短线性基序(Slim)相互作用,并且该方法鉴定出多腺苷酸 - 结合蛋白1(PABP1)是许多RNA病毒的促病毒因子。在本文的第二部分中,我们通过执行抗坏血酸酯过氧化物酶(APEX)2屏幕来鉴定在TBEV NS4B附近发现的蛋白质,从而鉴定了参与TBEV感染的蛋白质。使用这种方法,我们确定了包含3(ACBD3)的酰基-COA结合域。通过修改内质网(ER)和Golgi之间的贩运,在TBEV和Langat病毒(LGTV)感染中影响病毒复制和组装的TBEV NS4B紧邻近距离发现。在论文的第三部分中,我们探讨了核孔蛋白(NUPS)在正叶病毒感染中的作用。nups是核孔复合物的基础,它是负责RNA和蛋白质在细胞核和细胞质之间运输的复合物。通过实施各种不同的分子生物学技术,我们确定NUP153和NUP98在病毒生命周期中至关重要。我们观察到,在正叶病毒感染期间,NUP153和NUP98在核中上调并从核区域募集到结合病毒RNA(VRNA)的胞质区域。我们发现NUP153调节病毒翻译,而NUP98对于病毒复制很重要,显示了该蛋白质家族在正佛病毒感染中的重要性和不同功能。此外,在本论文中,我们还评估了肽的使用来阻止这些特定的病毒宿主蛋白相互作用作为潜在的抗病毒药。我们表明,针对PABP1和NUP98的肽靶向和结合对几个正叶韦病毒是抗病毒活性的。在一起,本文中提出的发现使人们对病毒生命周期所需的特定宿主因素有了更好的了解。这些知识可用于新抗病毒药的发展。
1医学物理系,IRCCS Azienda Ospedaliero-Universitaria di Bologna,意大利博洛尼亚; 2纽约纽约的纪念斯隆·凯特林癌症中心医学物理部; 3威斯康星大学 - 威斯康星州麦迪逊分校放射学系; 4马里兰州格伦·伯尼(Glen Burnie)核医学研究所; 5澳大利亚新南威尔士州瓦格·瓦格(Wagga Wagga)查尔斯·斯特特大学(Charles Sturt University)牙科与健康科学学院; 6康涅狄格州纽黑文市耶鲁大学医学院放射学和生物医学成像系; 7密苏里州圣路易斯的华盛顿大学生物医学工程和Mallinckrodt放射学院; 8拉脱维亚拉脱维亚大学临床与预防医学研究所; 9纽约纽约的纪念斯隆·凯特林癌症中心放射学系;纽约纽约市威尔·康奈尔医学院放射学系10; 11加利福尼亚州戴维斯戴维斯分校生物医学工程系;瑞士伯尔尼大学核医学系12; 13加拿大不列颠哥伦比亚大学不列颠哥伦比亚大学放射学系; 14放射学和放射科学系,约翰·霍普金斯医学院,马里兰州巴尔的摩; 15瑞士日内瓦日内瓦大学医院核医学和分子成像司; 16荷兰格罗宁根大学医学中心格罗宁根大学核医学与分子成像系; 17加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学放射与物理学系;和18 United Theranostics,贝塞斯达,马里兰州
细胞谱系历史及其分子状态编码组织发育和稳态的基本原理。当前的谱系录制小鼠模型的条形码多样性有限,单细胞谱系覆盖范围较差,从而排除了它们在由数百万个细胞组成的组织中的使用。在这里,我们开发了Darlin,这是一种改进的CAS9条形码小鼠系,它利用末端脱氧核苷酸转移酶(TDT)来增强30个CRISPR目标位点的插入事件,稳定地整合到3个不同的基因组基因座中。darlin是可诱导的,估计有〜10 18个层次条形码,并可以检测约60%的剖面单细胞中可用的条形码。使用Darlin,我们检查了发育中的造血干细胞(HSC)中的命运启动,并揭示了HSC迁移的独特特征。此外,我们为单个细胞中的共同介绍了一种方法来共同介绍DNA甲基化,染色质可及性,基因表达和谱系信息。darlin将在各种组织和生理环境中对谱系关系及其分子特征进行广泛的高分辨率研究。
摘要:folfoxiri,即5-脂肪酸,奥沙利铂和伊立替康的组合是对结直肠癌(CRC)的第一线治疗,但非人性化和侵略性。在这项研究中,为了模仿被诊断为晚期CRC并接受Folfoxiri长期治疗的患者的临床状况,我们已经生成了用Folfoxiri长期治疗的CRC细胞克隆。与未得到治疗的调用相比,在所有四个细胞系中,对Folfoxiri的敏感性均显着损失,如2D培养和异型3D共培养所示。通过在肌动灯的组织中形态变化观察到获得的耐药性诱导。块状RNA测序表明,在SW620抗性细胞系中,葡萄糖转运蛋白家族5(GLUT5)的重要上调,而在LS174T耐药细胞系中,蛋白质酪氨酸磷酸酶磷酸酶S(PTPRS)的显着下调和氧气磷酸化酶脱氢酶含量(oxoglutarate eDhifeNAPE)(蛋白酪氨酸磷酸化酶受体S(PTPRS)的显着下调。通过RAS-RAF-MEK-ERK途径作用的优化的低剂量协同药物组合(ODC)克服了对Folfoxiri的抗性。ODC抑制了SW620和LS174T 3DCC中的细胞代谢活性,分别抑制了高达82%。
支持图4:氢等离子体对kg/au(111)样品的影响。a,附加到负载锁室的等离子体设置的图片。b,典型的概述STM图像,显示等离子处理前kg/au的形态(111)(i t = 1 pa,v s = 0.1 v)。c,暴露于氢等离子体5分钟后样品形态的STM图像(i t = 1 pa,v s = 0.1 V)。等离子体是通过匹配网络通过匹配的网络在距离样品中使用13.56 MHz射频(RF)发电机使用100W的13.56 MHz射频(RF)发电机创建的。放电期间的压力为P 1×10-2 MBAR。该RF功率通过外电极(表面)耦合到管子。样品面向等离子体通量(角度= 90°)。d,暴露于氢血浆(p = 100 w)的样品形态的STM图像,(i t = 1 pa,v s = 0.1 V)。与等离子体通量相比,样品的放牧发生率(角度= 0°)。血浆处理蚀刻Kg聚合物。金表面没有显示簇,但人字重建略微修饰。e,暴露于氢血浆(P = 20 W)的样品形态的STM图像,然后在470 K处将底物退火。样品未直接暴露于等离子体方向(角度= -90°)。利用血浆中产生的原子氢在避免表面溅射的同时,如主手稿中所述,这种方法导致kg羰基的减少。
在本文中,基于离子电活性聚合物(IEAP)的三层微型激活器的电响应考虑了在微实施行为中出现的某些现象。分析了对充电和排放过程中测得的电流的详细研究。研究了简化的等效电路的电荷,时间构成,电容和电阻。结果表明,微型演员表现出低于1 V的施加电压的线性行为。除此之外,非线性出现并与放电过程有关,尤其是以非线性方式增加的相应电阻。在此阶段,取决于先前施加的电压的累积电荷在放电过程中未完全恢复。这项研究的结果通过实验和理论结果进行了说明。
摘要我们引入了一种数据驱动的方法和软件,用于检测和定位大型地震数据集中的地震。通过结合通过神经网络相拾取器传递的地震阶段到达注释,并通过自适应OCTREE搜索进行波形堆叠,我们也可以自动检测并定位Seis-MIC事件,即使在噪声主导地震数据中也是如此。搜索量的分辨率是地震源位置的迭代精制;该策略促进了有效,快速和准确的搜索。我们提出了一个基于既定框架,fea-turing事件检测层和复杂的3D速度模型以及事件特征提取功能,SutasmomentAndlocomeMentAndlocalMagnitudeCalcalulculationFrompeakeakermotions,提供了一个用户友好且高性能开源软件框架。Weimedsatation特定的校正和特定于源的电台项中的搜索中,以提高位置准确性。我们通过从不同地区和地质环境中的大型地震数据集中提取广泛的地震目录来验证并验证我们的方法:(1)冰岛雷克雅内斯半岛; (2)德国Eifel火山区; (3)犹他州锻造。我们从构造活动,火山群和诱导的微吸毒活性中捕获地震事件,幅度在-1到5。如此精确而完整的地震目录有助于解释和理解原本隐藏的地下过程。
1。癌症中心,临床试验中心,西川大学,中国四川,四川,中国。2。分子与细胞生物学研究所(IMCB),科学,技术与研究机构(A ∗ Star),新加坡138673,新加坡。3。中国四川大学西川大学癌症中心癌症中心癌性多模式治疗部。 4。 中国四川大学四川大学癌症中心癌症中心腹部肿瘤多模式治疗师。 5。 癌症中心,国家医疗产品管理局临床研究和评估的关键实验室,中国四川大学,西丘德大学,中国四川,中国,中国。 6。 新加坡免疫学网络(标志),科学,技术与研究机构(A*Star),新加坡138648,新加坡。 7。 新加坡国立大学新加坡国立大学Yong Loo Lin医学院微生物与免疫学系117545,新加坡。中国四川大学西川大学癌症中心癌症中心癌性多模式治疗部。4。中国四川大学四川大学癌症中心癌症中心腹部肿瘤多模式治疗师。5。癌症中心,国家医疗产品管理局临床研究和评估的关键实验室,中国四川大学,西丘德大学,中国四川,中国,中国。6。新加坡免疫学网络(标志),科学,技术与研究机构(A*Star),新加坡138648,新加坡。7。新加坡国立大学新加坡国立大学Yong Loo Lin医学院微生物与免疫学系117545,新加坡。
摘要:在许多行业中,使用腐蚀抑制剂的使用是占普遍的,以减少与腐蚀环境接触的金属和合金的腐蚀。天然提取物通常用于保护金属材料免受腐蚀。这些提取物作为腐蚀抑制剂的效率通常通过电化学测试评估,其中包括减肥测量等技术。在这项研究中研究了neem提取物(Azadirachta Indica)叶的提取物对0.1m HCl和0.1m NaOH溶液中锌金属腐蚀抑制的影响。索斯特技术用于静脉叶萃取。使用电化学和减肥技术研究了锌金属的腐蚀抑制。在含有0.1m HCl,0.1M NaOH和不同浓度的neEM提取物的测试溶液中进行了实验。通过溶解HCl的分析试剂(AR)(37%)和0.1M NaOH碱(40%)的分析试剂(AR)溶液(AR)溶液(40%)。还制备了用作抑制剂的INEM提取物的1 ppm – 5 ppm。100 mL测试溶液用于减肥测量。结果表明,在所有温度研究中,发现NEEM提取物抑制0.1m HCl和0.1M NaOH溶液中的锌腐蚀。提取溶液的浓度(PPM)的增加会降低0.1m HCl和0.1M NaOH溶液中锌腐蚀的速率。因此,它提高了抑制效率。腐蚀速率随时间增加,但随着提取溶液浓度的增加而降低。1。最后,发现印em叶提取物是一种极好的潜在腐蚀抑制剂。简介