近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。
在这里,我们探讨了探针分子(甲苯)在四种流行结构的 MOF 薄膜中的质量转移:HKUST-1、ZIF-8、UiO-66 和 UiO-67。HKUST 代表香港科技大学,ZIF 代表沸石咪唑酯框架,UiO 代表奥斯陆大学。使用石英晶体微天平 (QCM) 量化客体的吸附和扩散。将 MOF 薄膜暴露在普通环境空气中,并表征其对吸收性能的影响。虽然所有 MOF 薄膜的晶体度都是稳定的,如 X 射线衍射 (XRD) 所示,但我们表明,HKUST-1 和 UiO-67 中甲苯的吸附量和速率常数在暴露于环境空气后严重下降。另一方面,UiO-66 和 ZIF-8 是稳定的,吸附和扩散性能不受样品与实验室空气长期接触的影响。为了揭示缺陷并阐明降解机理,我们使用红外光谱,并将导致传质阻力增加的缺陷与之前描述的缺陷联系起来。对于 UiO-67,实验补充了使用不同客体分子以及 MOF 粉末的吸收实验,结果显示类似的降解和表面屏障演变。在 UiO-67 MOF 中发现的此类传质表面屏障尚未在 UiO 型 MOF 中出现。研究表明,尽管材料的结晶度
摘要:由于发育和成人大脑以及疾病中的活神经茎/祖细胞(NSPC)迫切需要简单和非侵入性鉴定,因为在预后,诊断和神经系统疾病治疗方面的潜在临床重要性,因此在脑肿瘤中(例如脑肿瘤)。在这里,我们报告了一种名为P-HTMI的发光共轭寡硫苯(LCO),用于非侵入性和未扩增的实时检测人类患者衍生的胶质母细胞瘤(GBM)干细胞样细胞和NSPC的实时检测。虽然P-HTMI仅染色了其他细胞类型的一小部分,但在细胞培养中仅添加了P-HTMI,从而在几分钟内有效地检测了啮齿动物和人类的NSPC或GBM细胞。p-HTMI用类似组氨酸/组胺的侧链甲基化的咪唑部分官能化,非甲基化类似物的功能不正常。人类GBM细胞的细胞分选实验表明,P-HTMI标记了与CD271相同的细胞群体,这是一种针对干细胞样细胞的标记和胶质母细胞瘤中迅速迁移的细胞。我们的结果表明,LCO P-HTMI是一种通用的工具,用于立即和选择性检测神经和神经胶质瘤茎和祖细胞。关键字:生物电子学,祖细胞,脑肿瘤,甲基化,p75ntr■简介
具有富含镍的阴极的锂金属电池(LMB)是下一代高能密度电池的有前途的候选者,但是缺乏能力保护性的电极/电解质相互作用(EEIS)限制了其周围性。在此,提出了三氧基苯苯作为局部浓缩离子液体电解质(LCILES)的助理,以增强EEIS。通过对纯离离子液体电解质(ILE)和三个使用纤维苯,三甲基苯基苯或三氧基苯苯的比较研究电导率和功能,以及通过调节1-乙基-3-甲基咪唑醛酸阳离子(EMIM +)和BIS(FuroSulfonyl)酰亚胺阴离子的贡献,EEIS的组成。Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm − 2 lithium metal anodes (LMAs), 21 mg cm − 2 LiNi 0.8 Co 0.15 Al 0.05 (NCA) cathodes, and 4.2 μ L mAh − 1 electrolytes for 150 cycles with a remarkable capacity retention 71%,这要归功于LMA上富含无机物种的固体电解质相,尤其是富含EMIM +衍生物种的NCA阴极上的均匀阴极/电解质相间。相比之下,在相同条件下的容量保留率分别仅为16%,46%和18%,而基于氟苯和苯并二烯氟化物的LCLE分别为16%,46%和18%。
伏诺替纳斯特的结构特征显示了三个部分,例如表面识别苯甲酰胺,接头己酰基和金属结合羟氨酸。在这项工作中,用取代的苯基环改变了表面识别组,咪唑基 - 三唑组用相同的金属结合羟氨基酸更改了接头组,最后设计了(F1-F4)分子。然后将所有设计的分子对接使用HDAC 2(4LXZ)受体。f4显示-8.7 kcal/mol的最大结合能,标准vornostat显示-7.2 kcal/mol。所有设计的分子都是使用gromacs软件模拟的分子动力学,以确定RMSD,RMSF,SASA和氢键的数量。所有仿真数据显示配体和受体之间的良好相互作用。然后,所有分子均由三个部分合成:a。二硝基苯基连接的三唑羟酸的合成,b。取代的恶唑酮衍生物的合成和c。在最后一步中,对替代的恶唑酮衍生物和二硝基苯基链接的三唑羟氨基酸反应,以产生最终的分子集(F1-F4)。DFT分析确定,F4以良好的亲电性而出现为最反应性分子。此外,对乳腺癌细胞系的体外抗增殖活性表明,F4是所有合成分子中最有效的抗癌分子。
难治性肿瘤细胞的发展通过激活促进细胞增殖、迁移、侵袭、转移和存活的机制限制了癌症的治疗效果。苯并咪唑类驱虫药具有广谱作用,可清除人类和兽医学中的寄生虫。除了作为抗寄生虫剂外,苯并咪唑类驱虫药还具有抗癌活性,例如破坏微管聚合、诱导细胞凋亡、细胞周期 (G2/M) 停滞、抗血管生成和阻断葡萄糖转运。这些抗肿瘤作用甚至延伸到对已批准疗法有抗性的癌细胞,当与传统疗法结合时,可增强抗癌效果并有望作为佐剂。最重要的是,这些驱虫药可能提供广泛、安全的癌症治疗谱,正如它们作为抗寄生虫剂的长期使用历史所证明的那样。本综述总结了有关苯并咪唑类驱虫药(包括阿苯达唑、帕苯达唑、芬苯达唑、甲苯咪唑、奥苯达唑、奥芬达唑、利克苯达唑和氟苯达唑)在癌细胞系、动物肿瘤模型和临床试验中的抗癌作用的核心文献。本综述提供了有关如何通过增加治疗选择和减少常规疗法的副作用来改善癌症患者生活质量的宝贵信息。
摘要:粮食不安全一直是全球面临的威胁,迫使研究人员开发即使在变化的气候条件下也能提高产量的作物。水稻是一种重要的主食和战略作物,有助于确保全球经济稳定、粮食和营养安全。它满足了世界各地人民 20% 的卡路里需求。最近,由于气候引起的水资源短缺以及人力资源、耕地等资源的减少,水稻种植和研究面临着前所未有的困难。在这方面,直播水稻 (DSR) 作为一种资源节约技术,作为传统移栽的潜在替代方案,越来越受欢迎,因为它可以减少投入需求、减少甲烷和二氧化碳排放、增强对气候变化的适应性并增加经济回报。DSR 中的杂草威胁在很大程度上阻碍了其取得丰硕成果。 DSR 高度依赖除草剂来控制杂草,因为人工除草和其他耕作方式需要大量劳动力,而这又会遭遇作物损伤(非选择性除草剂)和抗性杂草(选择性除草剂)的挫折。耐除草剂 (HT) 水稻可能是 DSR 杂草管理的有效长期解决方案。在此背景下,已经开发了三种 HT 水稻系统,即咪唑啉酮、草甘膦和草铵膦。本评论深入了解了 DSR 对 HT 水稻的需求、其生产系统、局限性以及正确管理水稻杂草的管理指南。
• 在标准条件下和基准化学品进行测试时,表现出卓越的甜味腐蚀抑制性能,在非优化配方中以 10 ppm 剂量显示 99.8% 的保护率 • 在 RCE(30 Pa 壁面剪切应力)测试和高流量条件下(在 +60°C 的 3% 氯化钠 (NaCl) 盐水中获得的数据),以 10 ppm 剂量显示腐蚀减少 >99%,表明性能稳定 • 与重盐水兼容,例如 26% NaCl、20% NaCl 在 +70°C,>30% 氯化钙和 50 000 ppm Ca/25 000 ppm 钠盐水在 +80°C • 在高温下对有机酸的抑制性能良好,例如在 +95°C 下 24 小时后在 10% 柠檬酸中对碳钢的保护率 >95% • 低级生态毒性,使其适合在最严格的监管环境中使用 • 水毒性比常见的油田 CI 碱(如苯扎氯铵和咪唑啉)低 10-100 倍,无环境危险标签 • 测试表明 Armohib ® CI-5150 腐蚀抑制剂不会刺激皮肤、致敏或致突变 • 在室温下呈透明液体状,易于处理 • 内部配方研究表明,活性材料在配制时非常灵活,可以开发水基和溶剂基腐蚀抑制剂溶液,包括那些采用环境可接受溶剂的溶液
因子 β (TGF- β )/SMAD、磷脂酰肌醇 3-激酶 (PI3K)/AKT 和 RAS/RAF,所有这些都是潜在的治疗靶点。此外,Traf2 和 Nck 相互作用蛋白激酶 (TNIK) 最近被确定为 β -catenin 和 T 细胞因子 4 (TCF-4) 转录复合物的调节成分。针对这种蛋白质的几种小分子化合物(NCB0846(NCB)、甲苯咪唑(MBZ)等)已显示具有抗肿瘤作用。[5] 据报道,在黑色素瘤中,肿瘤内在的活性β-catenin信号传导导致T细胞排斥和对抗PD-L1 /抗CTLA-4单克隆抗体疗法的耐药性。[7] 据报道,TNIK抑制剂(TNIKi)可以增强急性感染中T细胞向效应细胞的分化。[6] 由于对肿瘤和免疫细胞可能有不同的影响,TNIKi的体内效应很复杂,而且目前尚无全面的了解它如何影响CRC微环境。我们最近开发了一种多重免疫表型分析方法(FAST),可以通过细针抽吸(FNA)对肿瘤微环境中的细胞进行连续采样和深入分析。[8] 使用这种方法,我们已经询问了小鼠CRC模型中的免疫状况,并揭示了它在暴露于不同的TNIKi化合物后如何变化。结合体内和体外的其他研究,结果表明,TNIKi治疗可以通过诱导免疫原性肿瘤细胞死亡来触发强大的CD8 + T细胞介导的抗肿瘤反应,[9]进一步促进CD8 + T细胞
摘要。芬苯达唑是一种苯并咪唑类驱虫剂,常用于治疗动物寄生虫感染。在人类中,其他苯并咪唑类药物,如甲苯咪唑和阿苯达唑,被用作抗寄生虫剂。由于芬苯达唑目前尚未获得 FDA 或 EMA 的批准,其在人体中的药代动力学和安全性尚未在医学文献中得到充分记录。尽管如此,可以从现有的体外和体内动物药代动力学研究中得出一些见解。鉴于芬苯达唑成本低、安全性高、可及性强以及独特的抗增殖活性,芬苯达唑将成为治疗癌症的首选苯并咪唑化合物。为了确保芬苯达唑再利用过程中患者的安全,进行临床试验以评估其潜在的抗癌作用、最佳剂量、治疗方案和耐受性至关重要。本综述重点介绍口服芬苯达唑的药代动力学及其有希望的抗癌生物活性,例如在已发表的实验研究中抑制糖酵解、下调葡萄糖摄取、诱导氧化应激和增强细胞凋亡。此外,我们评估了芬苯达唑的毒性特征,并讨论了提高药物生物利用度、增强其疗效和降低潜在毒性的可能性。芬苯达唑,也称为甲基 N-(6-苯基硫烷基-1H-苯并咪唑-2 基),目前用作抗寄生虫药