亲爱的微生物学和免疫学成员们,我非常高兴地欢迎你们来到 2013-14 学年。特别是,我要欢迎我们的新学生和实习生,他们将在未来几年加入我们,成为 MIMM 团队的一员!我期待着与你们见面,与你们分享在麦吉尔学习和发现的兴奋之情。请随时来我的办公室聊天,分享想法,让我知道如何让麦吉尔的学习体验更好,让我们的部门变得更好。暑假给我们带来了许多好消息。感谢你们所有人取得的成就,详情如下。我们的学年以一场非常令人兴奋和振奋的研究静修会拉开帷幕,由新成立的微生物组和疾病耐受中心 (MDTC) 赞助。这次静修会提供了一个了解部门研究的框架,重新激发了合作的活力,并促进了我们实验室之间的新合作。从这个意义上说,MDTC 充当了催化剂,将我们的研究推向了新的卓越水平。最后,我们正处于建立行政卓越中心的早期阶段,除了我们的系之外,该中心还包括解剖学和细胞生物学系以及生物医学工程系。该中心将优化我们的财务和人力资源运营。学生事务组合仍保留在每个系内。我们的 AEC 副主任是 Maria Babiak:祝贺您晋升!但这并不是一次离职:Maria 将与系主任一起工作并向其汇报,因此将继续与我们系保持密切联系。
任何法医调查的基本原则都基于一个简单的公理,“任何接触都会留下痕迹。”研究犯罪现场留下的痕迹或遗物一直是证明或排除罪犯存在的重要手段。留在人体组织和咬伤材料上的咬痕已成为用于定罪嫌疑人的科学证据的一个重要方面。在大多数情况下,只涉及对咬痕的定性评估。在这些情况下,法医牙医将罪犯牙齿的形态与存在的咬痕进行比较。使用的参数是与牙弓相关的特征,例如牙齿形态、位置、数量和牙齿之间的距离与痕迹所显示的牙齿形态、位置、数量和牙齿之间的距离。尽管基于此类比较的咬痕分析被法院广泛接受,但其作为证据使用的基本有效性和科学依据经常受到质疑。专家意见通常基于联想比较而不是度量分析,许多人认为有必要使用额外的比较测试来实现公正的客观性。
1个动物科学研究生课程(PPGCAN),兽医学院,帕拉联邦大学(UFPA),Castanhal 68746-360,宾夕法尼亚州,巴西; eder.b.rebelo@gmail.com(é.b.r.d.s。); camargojunior@gmail.com(R.N.C.C.-J.); adrinysantos2@gmail.com(A.D.S.M.L.); thomazguimaraes@yahoo.com.br(T.C.G.D.C.R.); joselourencojr@yahoo.com.br(J.D.B.L.-J.)2亚马逊联邦农村大学动物健康与生产研究所,贝利姆66000-000,巴西; jamileandrea@yahoo.com.br 3 Embrapa Eastern Amazon,Santarem 68010-180,宾夕法尼亚州,巴西; lucieta.martorano@embrapa.br 4亚马逊大学中心兽医系(UNAMA),圣塔勒姆68010-200,巴西,巴西; tatianebelovet@gmail.com(t.s.b.); cadu34.medvet@gmail.com(C.E.L.S.); rubensandrade.medvet@gmail.com(R.L.A。); gizelamedvet@gmail.com(A.G.D.S.S.S.); katarinacc4@gmail.com(K.C.D.C.)5农业和环境科学系,马托·格罗索联邦大学(UFMT),辛普78550-728,巴西,巴西; cvaufmt@gmail.com 6生物多样性与森林研究所 - 伊比夫,西方联邦大学(UFOPA),圣塔雷姆68040-255,宾夕法尼亚州,巴西; jucelane.lima@ufopa.edu.br(J.S.D.L.); kedson_neves@hotmail.com(K.A.L.N。)7帕尔萨尔大学联邦大学(UFPA)兽医学院,帕斯坦哈尔68740-000,巴西; silva_lilian@yahoo.com.br *通信:welligton.medvet@gmail.com;电话。: +55-(93)-988070692
斑点的灯笼蝇(SLF),Lycorma Delicatula(White)(Hemiptera:Fulgoridae)是一种侵入性的Planthopper,已知以33个植物科(包括商业葡萄藤在内的33个植物科)为食。SLF原产于中国,印度和越南(Kim等,2021)。直到2004年从本地范围传播到韩国,2008年的日本和2014年的美国(Barringer等人,2015年; Kim等人),它才被认为是一种广泛的侵入性农业害虫。2021)。自从到达美国以来,SLF已在至少11个东部国家建立。这些州正在与美国农业部(USDA)(stopslf.org)进行各种治疗和控制活动。实时,可行的SLF生活阶段在加利福尼亚的环境中尚未发现,但是部门工作人员在2019年至2022年的飞机运输中拦截了多个死亡生命阶段和一些活着的成年人,并在2019年至2022年的边界处被拦截。由于SLF在加利福尼亚州建立的经济和环境可能会产生重大的经济和环境影响,因此该部门已将其分配为“ A”害虫评级。A害虫评级名称将目标害虫置于最高风险调节类别。此外,加利福尼亚州还针对SLF建立了州外隔离区(加利福尼亚州第3条法规(CCR)§3287)。
越来越明显的是,肠道中的无数微生物在细胞内并附着在身体部位(或植物的根)上,对宿主起着至关重要的作用。尽管这已知数十年,但分子生物学的最新发展允许扩大对这些微生物的丰度和功能的洞察力。在这里,我们使用了醋果蝇果蝇(Drosophila Melanogaster),研究了整个苍蝇的适应性度量,分别喂养了从年轻或老蝇中收获的肠道微生物的悬浮液。我们的假设是,苍蝇具有“年轻微生物组”的组成性丰富,在老年时会更长,更敏捷(即的健康状态增加。我们的研究中传来了三个主要的回家信息:(1)年轻蝇和老蝇的肠道微生物群都有明显不同; (2)用年轻和老年微生物组的喂食果蝇改变了受体苍蝇的微生物组,(3)两种不同的微生物饮食对运动运动的活性或受体蝇的寿命没有任何影响,这与我们的工作假设相矛盾。结合在一起,这些结果为宿主与其微生物组之间的相互作用提供了新的见解,并清楚地表明,肠道移植和益生菌的表型作用可能是复杂的,不可预测的。
经历了最大的变化,因为它们与38天大的苍蝇明显分离。年龄被认为是解释组之间的差异(Anosim,p <0.001,r = 0.6281)的最重要因素,而不是对观察到的差异显示影响的饲料(p = 0.429,r = 0.0013)(图2a)。年龄相关的分离似乎是在样品中的几个属的特征2b)。这两个时间点的大多数样品与大多数观察到的OTU一起吸引了Origo,这表明潜在的共享组成。3.2。微生物富集可以调节衰老蝇中的微生物组组成。
摘要 最初的计算机是人类使用算法来获得数学结果(如火箭轨迹)。在数字计算机发明之后,人们通过与计算机和现在的人工神经网络的类比,广泛地理解了大脑,这些类比各有优缺点。我们定义并研究了一种更适合生物系统的新型计算,称为生物计算,它是机械物理计算的自然适应。神经系统当然是生物计算机,我们重点关注生物计算的一些边缘情况,即心脏和捕蝇草。心脏的计算能力与蛞蝓相当,它的大部分计算发生在四万个神经元之外。捕蝇草的计算能力与龙虾神经节相当。这一论述通过说明经典可计算性理论可能忽略生物学的复杂性的方式,推动了神经科学的基本争论。通过重新构建计算,我们为解决人类和机器学习之间的脱节铺平了道路。
注意:如果携带,将计入 4 套最低 ACU OCP 完整制服(FRACU、Patagonia、Crye 等均获授权)不包括 V 型上衣、战斗衬衫等。游骑兵学校装箱单 - 可选物品