相互作用的量子汉密尔顿量是量子计算的基础。时间无关的量子汉密尔顿量的基于数据的断层扫描已经实现,但一个开放的挑战是使用从一小部分自旋局部获取的时间序列测量来确定时间相关的量子汉密尔顿量的结构。物理上,自旋系统在时间相关驱动或扰动下的动态演化由海森堡运动方程描述。受这一基本事实的启发,我们阐明了一个物理增强的机器学习框架,其核心是海森堡神经网络。具体来说,我们根据基于海森堡方程的一些物理驱动损失函数开发了一种深度学习算法,该算法“强制”神经网络遵循自旋变量的量子演化。我们证明,从局部测量中,不仅可以恢复局部汉密尔顿量,而且还可以忠实地重建反映整个系统相互作用结构的汉密尔顿量。我们在各种结构的自旋系统上测试了我们的海森堡神经机。在仅从一次自旋进行测量的极端情况下,实现的断层扫描保真度值可以达到约 90%。开发的机器学习框架适用于任何时间相关系统,其量子动力学演化受海森堡运动方程控制。
我们基于Hayden-Preskill Thought实验应用了量子传送方案,以量化给定量子演化的争吵。用来诊断出在与嘈杂的量子设备造成的脱碳效果的情况下诊断信息时的直接测量相比,它具有优势。我们通过将协议应用于两个物理系统来演示该协议:Ising自旋链和SU(2)晶格Yang-Mills理论。为此,我们在数字上模拟了哈密顿形式主义中两种理论的时间演变。基于Kogut-susskind形式主义,实施了Yang-Mills理论,并以适当的Hilbert Space截断。在两腿梯子的几何形状上,具有最低的非平凡旋转表示,它可以映射到自旋链中,我们称之为Yang-Mills-sising模型,也直接适用于将来的数字量子仿真。我们发现,阳米尔斯林模型显示了在晚期争夺信息的信号。
特别是量子计算[35]是根据统一动力学设计的,该动力学描述了与环境热隔离的系统。任何外部噪声都不可避免地会阻碍所谓的量子量[36-38],因为它会损害量子状态的微妙性质。然而,Landauer的原理(1)及其对开放系统的概括[39-45]是在有限温度下针对耗散动力的。因此,一些最近的问题试图通过直接分析测量和量子操作的能量来解决这个问题[46-48],或者通过将随机热力学的概念推广到零温度[49]。为了对最近的发展进行更全面的综述,我们指的是文献[50,51]。目前的分析专门用于替代治疗,主要目标是量化单一量子计算中单门操作的能量成本。因此,目前的分析在精神上与纯粹的古典系统中的最新考虑相似[52]。在范围内,我们在量子系统的边际,逻辑状态中编码的shannon信息的变化得出了上限,该信息在哈密顿栅极操作下演变[53]。我们发现,这种上限是由哈密顿量规范给出的,这在文献中提出了量子控制方案的能量成本[54-56]。因此,作为主要结果,我们获得了不平等,将处理信息的数量与运行的能量成本有关。这种小说的结合在功能上与广义兰道的量子计算原理相似,
在量子计算机上模拟费米子系统的能力有望彻底改变化学工程、材料设计、核物理等领域。因此,优化模拟电路对于充分利用量子计算机的功能具有重要意义。在这里,我们从两个方面解决这个问题。在容错机制下,我们优化了 rz 和 t 门数以及所需的辅助量子比特数,假设使用乘积公式算法进行实现。与现有技术相比,我们获得了门数节省率为 2 和所需辅助量子比特数节省率为 11。在预容错机制下,我们优化了两量子比特门数,假设使用变分量子特征求解器 (VQE) 方法。具体到后者,我们提出了一个框架,可以使 VQE 进程向费米子系统基态能量收敛的方向引导。该框架基于微扰理论,能够将 VQE 进程每个循环的能量估计值提高约三倍,与试验台上经典可访问的水分子系统中的标准 VQE 方法相比,更接近已知基态能量。改进的能量估计反过来又会节省相应数量的量子资源,例如量子比特和量子门的数量,这些资源需要在已知基态能量的预定公差范围内。我们还探索了一套从费米子到量子比特算子的广义变换,并表明在小规模情况下,资源需求节省高达 20% 以上是可能的。
模拟量子多体系统的动力学是物理学、化学和材料科学以及其他科学技术领域面临的核心挑战。虽然对于传统算法来说,这项任务通常难以完成,但量子电路提供了一种绕过传统瓶颈的方法,即通过“电路化”相关系统的时间演化。然而,当今的量子计算设备只允许对小型且嘈杂的量子电路进行编程,这种情况严重限制了这些设备在实践中的应用类型。因此,电路化程序的量子比特和门成本理所当然地成为决定任何潜在应用可行性的关键因素,而且越来越高效的算法正在不断被设计出来。我们提出了一种在量子电路上进行资源高效的汉密尔顿动力学模拟的新方法,我们认为该方法与最先进的量子模拟算法相比具有某些优势,这些优势直接转化为更短的算法运行时间[1、2](详细比较见第 4 节)。我们通过利用量子时间演化算子在其非对角线元素中的级数展开来实现这一点,其中算子围绕其对角线分量展开 [ 3 – 5 ]。这种展开允许人们有效地积分演化的对角线分量,从而与现有方法相比降低了算法的整体门和量子比特复杂性。在我们的方法中,时间演化被分解为相同的短时间段,每个时间段都使用非对角线级数中的多个项精确近似
在本文中,我们详细分析了变分量子相位估计 (VQPE),这是一种基于实时演化的基态和激发态估计方法,可在近期硬件上实现。我们推导出该方法的理论基础,并证明它提供了迄今为止最紧凑的变分展开之一,可用于解决强关联汉密尔顿量。VQPE 的核心是一组具有简单几何解释的方程,它们为时间演化网格提供了条件,以便将特征态从时间演化的扩展状态集中分离出来,并将该方法与经典的滤波器对角化算法联系起来。此外,我们引入了所谓的 VQPE 的酉公式,其中需要测量的矩阵元素数量与扩展状态的数量成线性比例,并且我们提供了噪声影响的分析,这大大改善了之前的考虑。酉公式可以直接与迭代相位估计进行比较。我们的结果标志着 VQPE 是一种自然且高效的量子算法,可用于计算一般多体系统的基态和激发态。我们展示了用于横向场 Ising 模型的 VQPE 硬件实现。此外,我们在强相关性的典型示例(SVP 基组中的 Cr 2)上展示了其威力,并表明只需约 50 个时间步就可以达到化学精度。
ℓ H ℓ 是任意二阶量子化费米子哈密顿量的乔丹-维格纳变换。Select ( H ) 是几种量子算法的主要子程序之一,包括最先进的哈密顿量模拟技术。如果二阶量子化哈密顿量中的每一项最多涉及 k 个自旋轨道,且 k 是与自旋轨道总数 n 无关的常数(文献中考虑的大多数量子化学和凝聚态模型都是如此,其中 k 通常为 2 或 4 ),则我们对 Select ( H ) 的实现不需要辅助量子位,并且使用 O ( n ) Cliufford+ T 门,其中 Cliufford 门应用于 O (log 2 n ) 层,T 门应用于 O (log n ) 层。与以前的工作相比,这实现了 Clifford 和 T 深度的大幅提升,同时保持了线性门数,并将辅助门数减少到零。
1物理与电子工程学院,计算科学中心,四川师范大学,成都610068,中华人民共和国2物理学系2,香港科学技术系,北卡罗来语,九龙,香港,香港,中华人民共和国库洛恩,中华人民共和国统计局3号国际机构和统计局,加拿大41 g。量子计算,滑铁卢大学,滑铁卢N2L 3G1,加拿大安大略省5 Max-planck-institutFürQuantenoptik,Hans-Kopfermann-Str.1,85748 Garching,德国6统计学和精神科学系,沃特洛群岛,沃特洛群岛,沃特洛群岛大学,INSTARIO,INSTARIO,INSTARIO STARION INSTARIO STARION INSTARIO,加拿大大学,加拿大大学。爱荷华州,爱荷华州50011,美国8这些作者对这项工作也同样做出了贡献。
量子相关性是执行各种量子插入和计算任务的里程碑资源,例如密钥分布,密码学,超密集的代码和传送,这些量子在经典上并非经典[1]。在执行这样一项任务时,长期保存和维持相关性至关重要[2]。然而,众所周知,它们在任何量子操作(例如噪声环境中的量子通道)下减少[3]。实际上,基于量子信息和计算科学的新技术的现实应用应用中,称为解相关的相关性丧失是现实世界中的主要障碍[4,5]。因此,寻找控制相关性降低并在信息技术中提供的新方法具有很大的兴趣[5,6]。我们将要处理的两分部分中生活的量子相关性的众所周知的量度是形成(EOF)的纠缠(eof),该纠缠量量化了根据最大纠结对准备某个量子状态所需的最低成本和所需量的量子通信[7-11]。