奥姆斯特德县位于明尼苏达州东南部,其地质主要为活跃的喀斯特地貌,由碎裂的石灰岩基岩组成,土壤覆盖很少(见图 1-1)。喀斯特地形使地下水容易受到地表水污染。在 20 世纪 80 年代,垃圾处理是社区的热门话题。奥罗诺科垃圾填埋场被列为超级基金清理场。人们越来越担心,由于当地喀斯特地貌的地下裂缝、裂隙、落水洞和管道使地下水容易受到污染,该场址的渗滤液可能会影响饮用水含水层。社区本可以轻松地决定将垃圾运往另一个县或州,但领导者决定寻求更全面的系统和更好的方法来处理固体废物。他们的远见和领导力促成了一个综合固体废物管理系统,其中包括废物转化为能源 (WTE) 设施、回收中心、危险废物处理中心
niedpnwiedzia(熊)洞穴的入口位置在50°14'03“ N,16°50'03” e,于1966年10月14日发现,属于波兰最大的洞穴之一,同时是Sudetes Mts中的领先者。(SW波兰)。自1983年喀斯特空缺以来,游客可能会到达,其周围环境受到自然保护区的保护。在过去的数十年中,内部的Kleśnica盆地和尼德威兹亚洞穴一直是密集地质,地质形态,水文地质和地球物理研究的主题,例如[1,2,3,4,5,6]。最近几年带来了新事实,是洞穴地区研究中新篇章的冲动。在2012年至2014年,来自弗罗茨瓦夫(Wrocław)洞穴区的Speleologist探索了1979米的新洞穴通道,其中有一些壮观的speleothems(例如Mastodont Hall和Humbaki Hall)。在此期间,地下洞穴通道进行了重新检查,从而产生了新的高精度洞穴地图[7,8]。自2013年以来同时
在先前的研究中尚未解决北岸石灰岩喀斯特式含水层系统中地下水的重要性和运动的重要性。上面提到的北海岸石灰石含水层水文地质学的研究假定了弥漫流的流行,以解释地下水的运动和发生。Periouse(1971)确定了前拉米空军基地区域的谱系,该区域可能是骨折系统的表面表达,负责阿加迪拉附近的海上泉水。Meyerhoff等人(1983年)讨论了北海岸中部三级序列中某些谱系的存在,以指示深处的结构。然而,全年的茂密植被覆盖层阻止了立体意义地形特征的识别,尤其是线性分析的大量使用。Rodriguez-Martinez(1997)将北海岸石灰石含水层系统的几个弹簧描述为导管型弹簧。这些弹簧通常通过集成的导管网络连接到地下。Rodriguez-Martinez和Hartley(1994)报道了在Hatillo和Isabela中分别在测试Wells NC-6和NC-11中存在洞穴,作为
摘要。Rante H,Manggau MA,Alam G,Pakki E,Erviani AE,Hafidah N,Abidin HL,Ali A.2024。在印度尼西亚Maros-Pangkep的卡丁车生态系统中隔离和鉴定具有抗真菌活性的放线菌。 生物多样性25:458-464。 放线菌产生了各种具有抗菌,抗病毒和抗癌作用(例如抗菌,抗病性和抗癌作用)的生物活性二级化合物。 这项研究旨在隔离,鉴定和筛选抗阴茎从印度尼西亚Maros-Pangkep的喀斯特生态系统收集的土壤环境样本中。 然后将活性分离物发酵,以生产次级代谢产物。 发酵过程在150 rpm的搅拌条件下使用M1培养基12天。 根据序列Gen 16S rRNA鉴定了分离株放线菌。 对白色念珠菌ATCC 10231和尼日尔ASPERGILLUS NIGIL ATCC 16404的抗真菌活性进行筛查。 使用纸盘应用扩散方法来评估抗真菌活性。 结果表明,从收集的土壤样品中纯化了8个分离株。 从获得的8种分离菌中,两个放线菌在筛选方法中表现出抗真菌活性,即用代码B11和B 17分离出。在印度尼西亚Maros-Pangkep的卡丁车生态系统中隔离和鉴定具有抗真菌活性的放线菌。生物多样性25:458-464。放线菌产生了各种具有抗菌,抗病毒和抗癌作用(例如抗菌,抗病性和抗癌作用)的生物活性二级化合物。这项研究旨在隔离,鉴定和筛选抗阴茎从印度尼西亚Maros-Pangkep的喀斯特生态系统收集的土壤环境样本中。然后将活性分离物发酵,以生产次级代谢产物。发酵过程在150 rpm的搅拌条件下使用M1培养基12天。根据序列Gen 16S rRNA鉴定了分离株放线菌。对白色念珠菌ATCC 10231和尼日尔ASPERGILLUS NIGIL ATCC 16404的抗真菌活性进行筛查。使用纸盘应用扩散方法来评估抗真菌活性。结果表明,从收集的土壤样品中纯化了8个分离株。从获得的8种分离菌中,两个放线菌在筛选方法中表现出抗真菌活性,即用代码B11和B 17分离出。分离株B11的粗提取物对白色念珠菌和尼日尔的活性为2 mg/纸盘,1.5 mg/paber Disc和0.75 mg/Paper Disc。此外,发现分离物B17仅对白色念珠菌具有活性。对16S rRNA基因序列的系统发育分析表明,B11显示出与链霉菌菌株NBRC 15617的最高相似性。
图 3-17 受影响的受访者 ............................................................................................. 3.1-13 图 3-18 希望被联系 ............................................................................................. 3.1-13 图 3-19 担心受到影响 ............................................................................................. 3.1-14 图 3-20 危险等级 ............................................................................................. 3.1-14 图 4-1 联邦灾害声明地图 ............................................................................................. 4.1-2 图 4-2 Davidson 县内的大坝和堤坝 ............................................................................. 4.1-6 图 4-3 J. Percy Priest 大坝 ............................................................................................. 4.1-8 图 4-4a Old Hickory 大坝 ............................................................................................. 4.1-8 图 4-4b Wolf Creek 大坝 ............................................................................................. 4.1-9 图 4-4c Center Hill 大坝 ............................................................................................. 4.1-9 图 4-5 Center希尔大坝溃坝情景 ................................................................................ 4.1-10 图 4-6 坎伯兰河系统 ...................................................................................... 4.1-11 图 4-7 都会中心堤坝修复 ................................................................................ 4.1-12 图 4-8 都会中心堤坝建设 ...................................................................................... 4.1-13 图 4-9 修复后的铁路封闭 ...................................................................................... 4.1-14 图 4-10 2010 年 5 月的沙袋 ...................................................................................... 4.1-14 图 4-11 I-65 内陆堤坝 ............................................................................................. 4.1-14 图 4-12 都会中心堤坝(2019 年) ............................................................................. 4.1-14 图 4-13 都会中心堤坝(2019 年) ............................................................................. 4.1-14 图 4-14 纳什维尔 Chew Crew ........................................................................... 4.1-14 图 4-15 大都会中心泵站 .............................................................................. 4.1-15 图 4-16 新站排水 .............................................................................................. 4.1-15 图 4-17 Opryland 综合体 2010 年 5 月洪水 ............................................................. 4.1-17 图 4-18 Opryland 防洪墙 ...................................................................................... 4.1-17 图 4-19 Opryland 堤坝泵站 ............................................................................. 4.1-18 图 4-20 Davidson 县流域 ............................................................................. 4.1-21 图 4-21 Davidson 县洪灾危险区 .............................................................................4.1-22 图 4-22 重复损失区域 .......................................................................................... 4.1-34 图 4-23 纳什维尔降水趋势 ...................................................................................... 4.1-54 图 4-24 纳什维尔温度趋势 ...................................................................................... 4.1-54 图 4-25 纳什维尔历史气候趋势 ...................................................................................... 4.1-54 图 4-26 广义地质图 ............................................................................................. 4.1-55 图 4-27a 新马德里地震区示意图 ............................................................................. 4.1-55 图 4-27b 东田纳西地震区示意图 ............................................................................. 4.1-56 图 4-28 峰值水平加速度 ............................................................................................. 4.1-58 图 4-29 地震活动 ............................................................................................................. 4.1-58 图4-30 地震灾害地图 ................................................................................ 4.1-60 图 4-31 I-24 滑坡 .............................................................................................. 4.1-61 图 4-32 滑坡证据 .............................................................................................. 4.1-62 图 4-33 2010 年 5 月洪水后滑坡证据 ...................................................................... 4.1-62 图 4-34a 斜坡失效位置 ...................................................................................... 4.1-63 图 4-34b 大于 25% 的斜坡 ...................................................................................... 4.1-63 图 4-35 局部天坑 ............................................................................................. 4.1-65 图 4-36 喀斯特灾害地图 ............................................................................................. 4.1-65 图 4-37 Davidson 县天坑地图 ...................................................................................... 4.1-66 图4-38 TN 应报告疾病清单 ...................................................................... 4.1-68 图 4-39 天然气管道图 .............................................................................. 4.1-704.1-56 图 4-28 峰值水平加速度 ...................................................................................... 4.1-58 图 4-29 地震活动 .............................................................................................. 4.1-58 图 4-30 地震危险图 ...................................................................................... 4.1-60 图 4-31 I-24 滑坡 ............................................................................................. 4.1-61 图 4-32 滑坡证据 ............................................................................................. 4.1-62 图 4-33 2010 年 5 月洪水之后的滑坡证据 ............................................................. 4.1-62 图 4-34a 边坡失效位置 ............................................................................................. 4.1-63 图 4-34b 大于 25% 的边坡 ............................................................................................. 4.1-65 图 4-36 喀斯特灾害地图 ...................................................................................... 4.1-65 图 4-37 Davidson 县天坑地图 ...................................................................... 4.1-66 图 4-38 TN 应报告疾病列表 ...................................................................... 4.1-68 图 4-39 天然气管道地图 ...................................................................................... 4.1-704.1-56 图 4-28 峰值水平加速度 ...................................................................................... 4.1-58 图 4-29 地震活动 .............................................................................................. 4.1-58 图 4-30 地震危险图 ...................................................................................... 4.1-60 图 4-31 I-24 滑坡 ............................................................................................. 4.1-61 图 4-32 滑坡证据 ............................................................................................. 4.1-62 图 4-33 2010 年 5 月洪水之后的滑坡证据 ............................................................. 4.1-62 图 4-34a 边坡失效位置 ............................................................................................. 4.1-63 图 4-34b 大于 25% 的边坡 ............................................................................................. 4.1-65 图 4-36 喀斯特灾害地图 ...................................................................................... 4.1-65 图 4-37 Davidson 县天坑地图 ...................................................................... 4.1-66 图 4-38 TN 应报告疾病列表 ...................................................................... 4.1-68 图 4-39 天然气管道地图 ...................................................................................... 4.1-70
10.30-11.00 Roland Ludwig: Enzymes contributing to sustainable food production, University of Natural Resources and Life Sciences, Austria 11.00-11.20 Andreja Leboš Pavunc: Use of by-products in the production of new generation encapsulated probiotics, University of Zagreb Faculty of Food Technology and Biotechnology, Croatia 11.20-11.35 Marko Vinceković:动物亚基的双歧杆菌的封装。乳酸化属于复合生物聚合物微粒,萨格勒布大学农业学院,克罗地亚11.35-11.50NaiaraFernández:微取代的工具,是一种增强禁欲酸作为食物防腐剂的性能的工具弗罗茨瓦夫环境与生命科学大学食品化学与生物催化系的商业重要风味和香料化合物的合成,波兰12.05-12.20菲利帕·伯鲁(Filipa Burul)吸引橄榄冠层挥发性化合物,亚得利亚作物研究所和喀斯特开垦,克罗地亚12.20-12.40AntonelaNinčevićGrassino:超声预处理和真空培训的超声浆后南瓜浆的营养特征
天然铁矿石洞穴已经闻名了几个世纪,但由于其尺寸很小,斑点缺乏,并且在许多情况下,由于它们在偏远地区的位置,因此没有引起太多关注。随着巴西环境法的最新变化和在巴西的米纳斯·格拉斯州以及巴西帕拉州卡拉萨斯州的QuadriláteroFerrífero的铁矿石勘探的增长,其中大量这些洞穴被发现和分类。洞穴环境立法需要几项技术研究,但主要是关于运营许可的地理结构方面,通常是长期的。地球物理学表明,在最近的研究中,有可能加速和改善洞穴岩石结构图,尤其是其屋顶,以阐明稳定性问题。浅地地球物理方法用于绘制和表征山洞所在的岩石质量。在这些铁质的喀斯特环境中对地球物理映射的挑战是相当大的,因为洞穴的尺寸很小,并且宿主岩石的物理特性很可变。在这项工作中,分析并讨论了在巴西北部的N4en Iron Iner矿场上执行的,在位于巴西北部的N4en Iron Ine的天然洞穴上执行的电阻率和GPR(地面穿透性雷达)的结果。
摘要。含水层具有独特而高度适应的物种,有助于关键的生态过程和服务。了解含水层中驱动无脊椎动物的关键因素是一项具有挑战性的任务,传统上这主要是在喀斯特实现的。这项研究旨在解除影响意大利中部火山含水层中地下水甲壳类动物(尺寸为0.036至1 mm)的组成和功能的因素。含水层由三个相邻的含水层单元(AUS)组成,显示不同的地球化学(即硫酸盐耗尽的,富含K的K和碱性)。我们采用了一种多学科的方法,整合了水文地质,地质,微生物学和生态学,以确定在生物逻辑组合中我们在三种AU中强调的环境差异是否得到了反映。,我们在三种AUS的地面甲壳类动物的分类学和功能组成中揭示了显着差异,并且在整个调查期间,这些模式均保持一致。值得注意的是,耗尽硫酸盐的AU缺乏地下水的物种,藏有洞穴和stehothermal和中等st骨的物种。富含K和碱性的AUS具有不同的物种;但是,这些物种表现出与运动,饮食和喂养习惯有关的相似功能。Stenothermal
地理信息系统 (GIS) 生成的数字高程模型 (DEM) 已被证明是水文研究中的有用工具,除其他外,它有助于划定集水区、确定排水模式和流径以及确定径流。它们在地形相对平坦的地区特别有价值,因为这些地区通常很难完成这些任务。然而,由于湿地的高程差异通常低于或刚好在标准地形图的等高线间隔范围内,标准地形图的等高线间隔通常为 20 米,某些地区为 5 米,因此后者无法提供足够的细节。这意味着湿地研究通常很难获得足够详细的地形信息。相对于许多研究预算而言,针对特定地点的高分辨率地形调查过于昂贵,无法成为可行的替代方案。本文以喀斯特泥炭地周围约 12 平方公里的研究区域为基础,介绍了一种以 1 米为间隔、低成本从 Google Earth TM 卫星图像中检索所需高分辨率高程数据的方法。本文介绍了使用 GIS ArcDesktop™ 捕获和处理数据以生成高分辨率等高线图和 DEM 的程序。为了保证质量,将生成的地图与总局测绘局 (CDSM) 发布的 5 米和 20 米等高线间隔标准地形图 (1:50000) 进行视觉比较。c 之后
我们给出了一个多项式时间量子算法,用于求解具有确定多项式模噪比的带错学习问题 (LWE)。结合 Regev [J.ACM 2009] 所示的从格问题到 LWE 的简化,我们得到了多项式时间量子算法,用于求解所有 n 维格在 ˜ Ω(n4.5) 近似因子内的决策最短向量问题 (GapSVP) 和最短独立向量问题 (SIVP)。此前,还没有多项式甚至亚指数时间量子算法可以求解任何多项式近似因子内所有格的 GapSVP 或 SIVP。为了开发一种求解 LWE 的量子算法,我们主要介绍了两种新技术。首先,我们在量子算法设计中引入具有复方差的高斯函数。特别地,我们利用了复高斯函数离散傅里叶变换中喀斯特波的特征。其次,我们使用带复高斯窗口的窗口量子傅里叶变换,这使我们能够结合时域和频域的信息。使用这些技术,我们首先将 LWE 实例转换为具有纯虚高斯振幅的量子态,然后将纯虚高斯态转换为 LWE 秘密和误差项上的经典线性方程,最后使用高斯消元法求解线性方程组。这给出了用于求解 LWE 的多项式时间量子算法。