石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
宽带隙半导体 SiC 和 GaN 已商业化用于电力电子和可见光至紫外发光二极管(例如 GaN/InGaN/AlGaN 材料系统)。对于电力电子应用,SiC MOSFET(金属 - 氧化物 - 半导体场效应晶体管)和整流器以及 GaN/AlGaN HEMT 和垂直整流器在高功率水平下提供比 Si 器件更高效的切换,现在正用于电动汽车及其充电基础设施。这些器件还可应用于涉及高温和极端环境的电动飞机和太空任务。在本综述中,将它们的固有辐射硬度(定义为对总剂量的耐受性)与 Si 器件进行了比较。宽带隙半导体的固有辐射硬度更高,部分原因是它们产生缺陷的阈值能量(原子键强度)更大,更重要的是因为它们的缺陷复合率高。然而,现在人们越来越认识到,SiC 和 GaN 功率器件中重离子引起的灾难性单粒子烧毁通常发生在电压约为额定值的 50% 时。在高线性能量传输速率和高施加偏压下,离子诱导泄漏发生在外延区域内的临界功率耗散之上。沿离子轨道耗散的功率量决定了漏电流衰减的程度。最终结果是沿离子轨道产生的载流子发生碰撞电离和热失控。发光器件不受这种机制的影响,因为它们是正向偏置的。应变最近也被确定为影响宽带隙器件辐射敏感性的一个参数。
摘要:忆阻技术已迅速崛起,成为传统 CMOS 技术的潜在替代品,而传统 CMOS 技术在发展过程中面临着根本性的限制。自 2008 年氧化物基电阻开关被证明可用作忆阻器以来,忆阻器件因其仿生记忆特性而备受关注,有望显著改善计算应用的功耗。本文,我们全面概述了忆阻技术的最新进展,包括忆阻器件、理论、算法、架构和系统。此外,我们还讨论了忆阻技术各种应用的研究方向,包括人工智能硬件加速器、传感器内计算和概率计算。最后,我们对忆阻技术的未来进行了前瞻性展望,概述了该领域进一步研究和创新的挑战和机遇。通过提供忆阻技术最新进展的最新概述,本综述旨在为该领域的进一步研究提供信息和启发。关键词:忆阻器、内存计算、电阻开关存储器、铁电存储器、相变存储器、离子插层电阻、记忆晶体管、神经形态计算、传感器内计算
新兴的宽带隙 (WBG) 半导体有望推动全球产业发展,就如同 50 多年前硅 (Si) 芯片的发明推动了现代计算机时代的到来一样。基于 SiC 和 GaN 的器件正开始变得更加商业化。与同类的基于 Si 的元件相比,这些 WBG 器件更小、更快、更高效,在更严苛的操作条件下也能提供更高的可靠性。此外,在此框架下,一种新型微电子级半导体材料被创造出来,其带隙甚至比之前建立的宽带隙半导体(如 GaN 和 SiC)还要大,因此被称为“超宽带隙”材料。这些材料包括 AlGaN、AlN、金刚石和 BN 氧化物基材料,它们在理论上具有更优越的性能,包括更高的临界击穿场、更高的工作温度和潜在的更高辐射耐受性。这些特性反过来又使得革命性的新器件可用于极端环境成为可能,例如高效功率晶体管(因为巴利加品质因数有所提高)、超高压脉冲功率开关、高效 UV-LED、激光二极管和 RF 电子设备。本期特刊发表了 20 篇论文,重点关注基于宽带隙的器件:设计、制造和应用。三篇论文 [1-3] 涉及未来 5G 应用和其他高速高功率应用的 RF 功率电子设备。其中九篇论文 [4-12] 探讨了宽带隙高功率器件的各种设计。其余论文涵盖了基于宽带隙的各种应用,如用于提高 GaN 基光子发射器光子提取效率的 ZnO 纳米棒 [13]、InGaZnO 薄膜晶体管 [14]、宽带隙 WO3 薄膜 [15]、银纳米环 [16、17] 和 InGaN 激光二极管 [18-20]。特别是在 RF GaN 器件方面,Kuchta 等人 [1] 提出了一种基于 GaN 的功率放大器设计,该设计降低了透射率畸变。Lee 等人 [2] 展示了一种用于 2.5 至 6 GHz 干扰系统的紧凑型 20 W GaN 内部匹配功率放大器,它使用高介电常数基板、单层电容器和分流/串联电阻器实现低 Q 匹配和低频稳定。 Lin 等人 [3] 通过集成厚铜金属化层实现了 Ka 波段 8.2 W/mm 的高输出功率密度。关于 GaN 功率器件,Wu 等人 [4] 研究了一种双 AlGaN 势垒设计以实现增强模式特性。Ma 等人 [5] 介绍了一种使用 GaN 的数字控制 2 kVA 三相分流 APF 系统。Tajalli 等人 [6] 通过进行缓冲分解研究了 GaN-on-Si 外延结构中垂直漏电和击穿的起源。可以确定每个缓冲层与垂直漏电和击穿电压相关的贡献。Sun 等人 [7] 研究了 GaN-on-Si 外延结构中垂直漏电和击穿电压的分布。[7] 提出了一种利用 TCAD 实现常关型 GaN HEMT 的新方法。该概念基于将栅极沟道方向从长水平方向转置为短垂直方向。Mao 等 [8] 在 IGBT 的集电极侧引入了一部分 p-polySi/p-SiC 异质结,以在不牺牲器件其他特性的情况下降低关断损耗。Kim 等 [9] 实现了 SiC 微加热器芯片作为下一代功率模块的新型热评估设备,并评估了其耐热性能。
摘要 太阳能驱动的界面蒸发 (SIE) 是一个新兴的研究课题,由于其在解决全球水资源短缺问题方面的潜力而受到关注。本综述全面概述了基础材料、光热材料的最新创新以及用于有效海水淡化和净化的蒸发器设计。本文详细讨论了 SIE 的最新发展,深入了解了关键性能指标和最先进的材料。此外,本综述还研究了文献中报道的用于提高 SIE 系统效率和可扩展性的新策略。这些策略包括使用光热材料和探索创新的设备配置。最后,我们讨论了现有的挑战和未来的研究方向,强调了 SIE 在解决全球水资源短缺和为可持续未来做出贡献方面的潜力。
摘要:石墨烯和其他二维 (2D) 材料的出现为光电子应用提供了巨大的潜力。人们提出了各种器件结构和新颖的机制来实现具有独特检测特性的光电探测器。在这篇小综述中,我们重点介绍了自驱动光电探测器,它在物联网和可穿戴电子产品所需的低功耗甚至无功率运行方面具有巨大潜力。为了解决自驱动特性的一般原理,我们提出并阐述了基于二维材料的自驱动光电探测器对称性破缺的概念。我们讨论了自驱动光电探测器破坏对称性的各种机制,包括不对称接触工程、场诱导不对称、PN 同质结和 PN 异质结构。回顾并比较了基于这些机制的典型器件实例。对当前自驱动光电探测器的性能进行了严格评估,并讨论了目标应用领域的未来发展方向。
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
北卡罗来纳州达勒姆和德国恩斯多夫——2023 年 2 月 1 日——碳化硅技术的全球领导者 Wolfspeed, Inc. (NYSE: WOLF) 和推动下一代移动出行的全球技术公司 ZF 今天宣布建立战略合作伙伴关系,其中包括建立联合创新实验室,以推动用于移动出行、工业和能源应用的碳化硅系统和设备的进步。此次合作还包括 ZF 的一项重大投资,以支持在德国恩斯多夫建设全球最先进、最大的 200 毫米碳化硅设备工厂的计划。联合创新实验室和 Wolfspeed 设备工厂均作为欧洲共同利益重要项目 (IPCEI) 微电子和通信技术框架的一部分进行规划,并取决于欧盟委员会的国家援助批准。“这些举措是朝着成功的工业转型迈出的重要一步。 “它们增强了欧洲的供应弹性,同时支持了欧洲绿色协议和欧洲数字十年的战略目标,”ZF 首席执行官 Holger Klein 博士说。 Wolfspeed 和 ZF 合作建立碳化硅研发中心 该战略合作伙伴关系包括在德国设立一个联合研究机构,该机构将专注于现实世界的电动汽车和可再生能源系统级挑战。 合作的目标是为碳化硅系统、产品和应用开发突破性创新,涵盖从芯片到完整价值链的整个价值链
量子纠错 (QEC) 是容错量子计算的核心构建块,但 QEC 代码的设计可能并不总是与底层硬件匹配。为了解决量子硬件和 QEC 代码之间的差异,我们提出了一个综合框架,可以在超导量子架构上实现和优化表面代码。具体来说,我们将表面代码合成分为三个关键子程序。前两个子程序优化数据量子位和辅助量子位(包括综合征量子位)在连通性受限超导架构上的映射,而最后一个子程序通过重新安排综合征测量来优化表面代码执行。我们在主流超导架构上的实验证明了所提出的综合框架的有效性。特别是,由所提出的自动综合框架合成的表面代码可以实现与手动设计的 QEC 码相当甚至更好的纠错能力。
近年来,晶体管的尺度不断逼近物理极限,阻碍了计算能力的进一步发展。后摩尔时代,新兴的逻辑和存储器件成为扩展智能计算能力的基础硬件。本文综述了用于智能计算的铁电器件的最新进展。首先阐明了铁电器件的材料性质和电学特性,然后讨论了可用于智能计算的新型铁电材料和器件。全面回顾和比较了用于低功耗逻辑、高性能存储器和神经形态应用的铁电电容器、晶体管和隧道结器件。此外,为了为开发基于高性能铁电的智能计算系统提供有用的指导,本文讨论了实现超大规模铁电器件以实现高效计算的关键挑战。