摘要 — 深入研究了增强型 p-GaN 栅极高电子迁移率晶体管 (HEMT) 的低噪声放大性能。该器件具有钨 (W) 栅极金属和与 CMOS 兼容的源极/漏极端子金属触点,表现出 2.7 V 的正阈值电压。在夹断区和导通区分别提取 3.8 pA/mm 和 16.3 nA/mm 的低栅极漏电流密度 (IG)。该器件在 2 GHz 时提供 15.8 dBm 的输入三阶截取点 (IIP3),同时具有良好的线性特性对频率变化的免疫力。在 2 GHz 的工作频率下实现了 0.9 dB 的最小噪声系数 (NF min) 和 12.8 dB 的相关增益 (G a)。此外,通过检查偏置和频率对 NF min 和 G a 的影响,发现在 1 GHz 时 NF min 为 0.65 dB,G a 为 18.3 dB。这项工作为 p-GaN HEMT 在低噪声放大器应用中的利用铺平了道路。
介绍了一种设计多级低噪声放大器 (LNA) 第一级的分析方法。本文讨论了在考虑后级噪声的情况下最小化总噪声系数 (NF) 的第一级优化方法。该方法侧重于第一级的源阻抗优化,同时考虑其 NF、增益和后级 NF 的影响。所提出的方法计算第一级的设计参数,以使多级 LNA 中的整体 NF 最小,而传统方法则建议最佳源阻抗以使第一级的 NF 最小。本文证明了 Smith 圆图中的恒定总 NF 轮廓与传统 NF 圆不同,并且 Γ opt 在相邻级 NF 不同的多级 LNA 中实现了最佳噪声性能变化。这些轮廓和最佳源阻抗针对特定的 LNA 进行描述,并与其恒定 NF 圆和 Γ opt 进行了比较。为了检验所提方法的可行性以及验证理论和仿真结果,我们制作了一个使用 ATF13136 晶体管的 4-5 GHz 分立式 LNA。结果表明,在 LNA 的第一级设计中考虑后续电路的噪声可降低整体 NF,同时改善其增益和输入匹配。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
摘要 本文研究了一种具有可变增益控制的 60 GHz 低功耗宽带低噪声放大器 (LNA)。为了证明这一概念,该电路采用 22 nm 全耗尽绝缘体上硅 (FD-SOI) CMOS 技术实现。它通过增益峰值(增益分配)技术支持 60 GHz 的宽带操作。通过调整放大器的一些关键匹配网络,每级的峰值增益被分配到不同的频率,从而产生整体宽带频率响应。该电路由三个级联共源共栅放大器级组成。匹配网络针对带宽和噪声系数进行了优化。晶体管背栅用于 LNA 设计,以将电路切换到低功耗待机模式。这避免了基于前栅的切换在电压击穿和电路稳定性方面的问题。此外,通过背栅实现了在如此高频率下同时实现可变增益控制。与基于前栅的相比,基于背栅的可变增益控制可以实现增益的连续微调,同时对控制电压的精度或分辨率要求较低。在测量中,增益通过背栅成功从 20 dB 调低至 − 25 dB。在 1 V 标称电源的 8.1 mW 直流功率下,LNA 提供 20 dB 的峰值增益、18.5 GHz 的带宽和 3.3 dB 的最小噪声系数。当偏置在 0.4 V 的降低直流电源下时,所给出的电路仅消耗 2.5 mW 的直流功率,并且仍然提供 10 dB 的功率增益和约 4.5 dB 的最小噪声系数。通过切换到待机模式,LNA 在标称电源下消耗 850 µ W 的直流功率,在降低电源下消耗 240 µ W 的直流功率。与之前报告的设计相比,LNA 表现出色,具有最低的噪声系数以及具有竞争力的增益、带宽和直流功率。据作者所知,这是第一款通过单独的背栅偏置具有联合可变增益控制和切换功能的 60 GHz LNA。
图表 图 1 接收器架构 [7] .................................................................................................... 6 图 2 用于生成 S 参数的输入和输出端口。 [8] ........................................................... 6 图 3 体 CMOS 与 FD-SOI 结构 [9] .............................................................................. 8 图 4 共栅极放大器(左)共源放大器(右) ........................................................ 10 图 5 级联电感退化 CS LNA 原理图 ........................................................................11 图 6 测试台设置 ......................................................................................................................... 14 图 7 Cpad 的参数扫描 ............................................................................................................. 15 图 8 理想元件的 S11 行为 ............................................................................................................. 16 图 9 所需频带的 S21 行为宽度 ............................................................................................................. 17 图 10 S21 带宽 ............................................................................................................................. 18 图 11 理想元件的噪声系数 ............................................................................................................. 19 图 12 增益(单位为 dBm) ............................................................................................................. 20 图 13 非理想元件的 S11 行为 ............................................................................................................. 21 图 14 非理想元件的 S21 行为........................................................................... 22 图 15 S21 带宽 ...................................................................................................................... 23 图 16 非理想元件的噪声系数 ...................................................................................................... 24 图 17 功率增益 ...................................................................................................................... 25 图 18 完整布局 ...................................................................................................................... 26 图 19 电阻器 MOSFET 和电容器的放大布局。 ............................................................. 27
1. 根据两个发射、两个接收亚纳秒脉冲的要求定制 FPGA 板和 RTL 设计。数量——1。 2. 基于 RTL 的多输入实时相关,具有可调延迟参数。 3. 符合规格或更好的 RF 组件(除非另有说明,所有组件均具有 50 欧姆阻抗)a. 低噪声放大器 (LNA) - UWB 100 MHz 至 5000 MHz,35 dB 增益,+8 dB 输入功率,噪声系数 < 3 dB@2GHz。数量——2。b. RF 放大器/驱动器 - UWB 100 MHz 至 3000 MHz,35 dB 增益,+10 dB 输入功率,输出功率 15 dBm@2GHz,噪声系数 < 3 dB@2GHz。数量——2。c. Vivaldi 天线 – 1000 MHz 至 6500 MHz,SWR < 2.5:1 @2GHz,实现增益 > 7 dBi @2GHz,实现效率 > 90% @2GHz。数量 – 4。4. RF 脉冲接收器的脉冲整形电子设备和发射器的输入调节电子设备。5. GUI 用于控制和监视整个系统的状态。6. 系统应针对 500 ps FWHM UWB RF 脉冲创建(在 FPGA 中)、传输(驱动器)、接收(LNA)和检测(在 FPGA 中)进行开发和优化。4 招标类型 两种投标系统
摘要 :低噪声放大器 (LNA) 是接收器最重要的前端模块。LNA 的噪声系数 (NF) 和散射参数影响整个接收器电路的整体性能。如今,在 5G 技术时代,传输数据的质量得到了提高。因此,需要更高的带宽来以更高的速度传输数据。在这种情况下,通信模块需要更新。这项研究是为了推动 LNA 的发展。LNA 设计的主要目标是降低噪声系数和回波损耗。本文旨在设计一个带宽为 400 MHz 的 2.4 GHz LNA。该电路是借助单短截线微带线设计的。我们试图将微带线的长度保持在尽可能短的范围内。这项工作中使用了晶体管 ATF-21170 砷化镓场效应晶体管 (GaAs FET)。该电路在 Keysight Advance Design System (ADS) 中进行了仿真。该放大器采用标准方法手工设计。LNA 在 2.2 GHz 至 2.6 GHz 的频率范围内无条件稳定。为了构建放大器的阻抗匹配电路,使用了史密斯图。观察到 LNA 增益 (S21) 大于 15.3 dB,NF 小于 1.2 dB,输入回波损耗 (S11) 小于 -13.3 dB,输出回波损耗 (S22) 小于 -17.1 dB,带宽为 400 MHz,范围从 2.2 到 2.6 GHz。据作者所知,这在文献中从未出现过。
在本文中,我们展示了一种用于卫星通信应用的低成本 7.25-7.75 GHz 两级低噪声放大器,其噪声系数低于 1 dB。采用 Rogers RT5880 基板上的微带技术(介电常数为 2.2,厚度为 0.508 mm)开发低噪声放大器。印刷电路板技术具有多种优势,例如成本低、重量轻以及制造过程后的可重新配置性,这些优势使该技术在商业和军事应用的卫星通信系统中具有吸引力。由于单片微波集成电路技术可提供更小尺寸的电路和高电气性能(尤其是在毫米波频率下),因此印刷微带技术可以成为集成电路技术的有力竞争对手,因为它具有经过验证的可靠性、更简单、更便宜和更快速的制造工艺以及 X 波段应用中可压缩的电气性能。此外,所提出的放大器是利用加州东部实验室的 Rogers-RT5880 上的 CE3512K2 晶体管开发的,并在匹配网络中使用了表面贴装器件以减小尺寸。此外,还实施了源生成和级间匹配拓扑,以简化匹配复杂性,从而增强噪声和增益。原型是利用 LPKF 原型机制造的。开发的 LNA 在工作频率带宽内表现出 23.5±0.5 dB 的测量增益,噪声系数小于 0.9 dB,输入/输出回波损耗优于 11.5 dB。此外,开发的放大器在中心频率处测量的载波干扰比为 -59 dBc,P1dB 为 13 dBm,同时消耗的总直流功率为 50 mW。
提出了一种采用 180 nm CMOS 工艺的上变频混频器。本研究详细阐述了几种混频器的类型、混频器的性能参数、混频器的拓扑结构以及提高混频器性能的设计技术。主要目的是提高增益、增加线性度和噪声系数。有四种金属层可供设计。对以前发表的研究进行了比较,并提出了低功耗混频器的最佳拓扑结构。关键词:混频器,噪声系数,变频增益,CMOS 1. 简介超宽带 (UWB) 系统是无线通信的主要技术之一。混频器是将 RF 信号转换为基带信号的关键。混频器是 RF 通信系统中最重要的元件之一。当两个不同的输入频率插入另外两个端口时,它被设计为在单个输出端口产生和频和差频。插入两个输入端口的两个信号通常是本振信号和输入(对于接收器)或输出(对于发射器)信号。要产生新频率(或新频率),需要非线性设备。射频混频器本质上是一种将信号从一个频率移到另一个频率的设备。混频器产生输入频率、LO 频率及其互调产物的谐波。这些谐波增加了混频器的非线性。设计混频器的基本目标是抑制谐波。理想的混频器是一个乘法器电路。理想的混频器将一个载波频率周围的调制转换到另一个载波频率。由于混频器是一种非线性设备,因此它无法执行频率转换。
可用设施:• 矢量网络分析仪(高达 18GHz,4 个端口)• 频谱分析仪(9GHz,前置放大器,噪声系数测量)• 基于 CSP 协议的空间发明者 GND2 UHF 收发器,输出功率为 50 瓦• MS100 Gomspace 遥测服务器(通过网络连接到客户端和 GS100 或 GS2000)• 基于 CSP 协议的 GS100 Gomspace UHF 25 瓦输出功率,支持(FSK、GFSK、MSK)• 基于 CSP 协议的 GS2000 Gomspace S 波段 25 瓦输出功率支持(FSK、GFSK、MSK)• 噪声源(10MHz 至 18GHz)• 其他测量工具(示波器 - ...等)