摘要:鉴于最近人们对纳米长度尺度上的光诱导磁性操控的兴趣日益浓厚,这项工作提出金属团簇是产生全光超快磁化的有前途的基本单元。我们使用时间相关密度泛函理论(TDDFT)在实空间中通过从头算实时(RT)模拟对金属团簇的光磁特性进行了理论研究。通过对原子级精确的简单金属和贵金属团簇中圆偏振激光脉冲等离子体激发的从头算计算,我们讨论了由于光场在共振能量下通过光吸收转移角动量而产生的轨道磁矩。值得注意的是,在近场分析中,我们观察到感应电子密度的自持圆周运动,证实了纳米电流环的存在,由于团簇中的逆法拉第效应(IFE),纳米电流环产生轨道磁矩。研究结果为理解量子多体效应提供了宝贵见解,该效应影响金属团簇中 IFE 介导的光诱导轨道磁性,具体取决于金属团簇的几何形状和化学成分。同时,它们明确展示了利用金属团簇磁化的可能性,为全光磁控领域提供了潜在的应用。
这是以下文章的同行评审版本:用于 ORR、HER 和 OER 的 C1N1 衍生碳材料中金属纳米团簇和单原子的先进设计,最终形式已在 Advanced Functional Materials 上发表:2300405 (2023),https://doi.org/10.1002/adfm.202300405。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。未经 Wiley 明确许可或适用法律下的法定权利,不得对本文进行增强、丰富或以其他方式转化为衍生作品。不得删除、隐藏或修改版权声明。文章必须链接到 Wiley 在 Wiley Online Library 上的记录版本,并且禁止第三方从 Wiley Online Library 以外的平台、服务和网站嵌入、框架或以其他方式提供文章或其页面。
• 为了实现通用性,至少需要 2D 集群状态、高斯运算和一个非高斯运算。 • 为了实现容错性,需要 3D 集群状态。 • 集群状态不需要一次性生成 - 一些节点可以同时生成,而其他节点则被测量消耗。
摘要:通过解决经典成核理论 (CNT) 的缺陷,我们开发了一种从成核速率实验中提取小水团簇自由能的方法,而无需对团簇自由能的形式进行任何假设。对于高于 ∼ 250 K 的温度,从实验数据点提取的自由能表明,随着团簇尺寸的变化,它们与 CNT 预测的自由能之比表现出非单调行为。我们表明,对于单体,该比率从几乎为零增加,并在接近大团簇的 1 之前通过(至少)一个最大值。对于低于 ∼ 250 K 的温度,提取的能量与 CNT 预测之间的比率行为会发生变化;它随着团簇尺寸的增加而增加,但对于几乎所有的实验数据点,它都保持在 1 以下。我们还应用了最先进的量子力学模型来计算水团簇(2 − 14 个分子)的自由能;尽管温度高于和低于 ∼ 298 K,结果仍然支持观察到的基于温度的行为变化。我们比较了两种不同的模型化学物质 DLPNO-CCSD(T)/CBS// ω B97xD/6-31++G ** 和 G3,并与水二聚体形成的实验值进行了比较。
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。局部信息通过创建复杂的关联(称为信息扰乱)在系统中传播,因为此过程阻止从局部测量中提取信息。在这项工作中,我们开发了一个改编自固态 NMR 方法的模型来量化信息扰乱。扰乱是通过时间反转 Loschmidt 回波 (LE) 和多重量子相干实验来测量的,这些实验本质上包含缺陷。考虑到这些缺陷,我们推导出非时间序相关器 (OTOC) 的表达式,以基于测量信息传播的活跃自旋数量来量化可观察的信息扰乱。基于 OTOC 表达式,退相干效应自然是由 LE 实验中未反转项的影响引起的。退相干会导致可测量程度的信息扰乱的局部化。这些效应定义了可观测的活跃自旋数量的局部化簇大小,从而确定了动态平衡。我们将模型的预测与使用固态 NMR 实验进行的量子模拟进行了对比,该实验测量了具有受控缺陷的时间反转回波的信息扰乱。从实验数据确定的量子信息扰乱的动态和其局部化效应之间具有极好的定量一致性。所提出的模型和派生的 OTOC 为量化大型量子系统(超过 10 4 个自旋)的量子信息动态提供了工具,与本质上包含缺陷的实验实现一致。
天体物理环境中发生的化学反应主要受碳氧 (C/O) 比控制。这是因为一氧化碳 (CO) 键能高达 11.2 eV,使 CO 成为已知的最稳定的双原子分子 ( Luo, 2007 )。这种经典的二分法受到了挑战,因为光化学和脉动激波等非平衡过程会破坏强 CO 键并导致意想不到的分子的形成 ( Agúndez et al., 2010; Gobrecht et al., 2016 )。难熔分子和分子团簇是恒星尘埃的前身,具有特别的天文学意义。碳主导区域中的主要尘埃种类之一是碳化硅 (SiC)。在富碳演化恒星中,通常会观察到约 11.3 微米的宽光谱特征,这归因于 SiC 尘埃颗粒的存在( Friedemann,1968; Hackwell,1972; Treffers and Cohen,1974)。 SiC 星尘是从原始陨石中提取的( Bernatowicz et al.,1987; Amari et al.,1994; Hoppe et al.,1996; Zinner et al.,2007; Liu et al.,2014)。最近的研究表明,在原始陨石星尘中发现的绝大多数太阳前 SiC 颗粒源自低质量渐近巨星支 (AGB) 恒星( Cristallo et al.,2020)。但是在富碳演化恒星的恒星包层中也检测到了 SiC、Si 2 C、SiC 2 等分子气相物质( Thaddeus 等人,1984;Cernicharo 等人,1989;McCarthy 等人,2015;Massalkhi 等人,2018)。气相硅碳分子和固态 SiC 尘埃的证据表明,它们的中间体(即 SiC 分子团簇)也存在于富碳天文环境中,并参与成核和 SiC 尘埃形成过程。因此,SiC 分子团簇是我们感兴趣的对象。这项研究是先前工作的延续(Gobrecht 等人,2017),并讨论了先前研究的中性(SiC)n(n = 1–12)团簇的(单个)电离能。本文的结构如下。在第 2 节中,我们介绍了用于推导垂直和绝热电离能的方法。第 3 节展示了这些能量的结果以及绝热优化的阳离子几何形状,第 4 节给出了我们的总结和结论。
正如 Edwards 等人 [1] 所记录的,LACC 以前的学生也证实,阻碍这些材料利用的一个障碍是它们倾向于分解成更稳定的 Cu 8 HL 6 一氢化物碎片,尤其是在暴露于荧光和/或酸性条件下时。然而,LACC 的学生还证实,更大的结构可以通过添加氢来再生。这一关键观察结果,即簇分解可以逆转,支持了铜氢化物簇可用作储氢材料的前提。