摘要:大型复合结构,例如在风能应用中使用的结构,依赖于热量的大规模聚合在令人印象深刻的大规模上。为了实现这一目标,传统的热固性聚合需要升高温度(> 100°C)和延长的治疗持续时间(> 5 h),以进行完全转换,因此需要使用超大烤箱或加热的模具。反过来,这些要求导致能源密集型聚合,从而产生了高生产成本和流程排放。在这项研究中,我们开发了可以在室温下通过变换的“化学加热”概念在室温下启动的热固性聚合,其中使用次级反应的放热能量来促进一级热代理聚合的加热。通过利用氧化还原引起的甲基丙烯酸甲酯自由基聚合作为放热化学能的来源,我们可以达到峰值反应温度> 140°C,以启动环氧 - 酸性热体的聚合,而无需外部加热。此外,通过采用特洛伊甲基丙烯酸甲酯单体在甲基丙烯酸酯和环氧树脂 - 酸酐结构域之间诱导混合,我们实现了与竞争性热力学特性和可调性的均质混合聚合物材料的合成。在此,我们为我们的创新化学加热方法建立了概念概念,并主张其工业整合,以更广泛地对风叶片和大型复合零件进行更节能和简化的制造。关键词:能源效率,制造,复合合成,热固性,双重治疗,化学加热,可回收划分■简介
BOZRAH 镇,Glenn Pianka,镇长 COLCHESTER 镇,Bernie Dennler,镇长 EAST LYME 镇,Dan Cunningham,镇长 FRANKLIN 镇,Alden Miner,镇长* GRISWOLD 镇,Tina Falck,镇长 JEWETT CITY 自治市,Laurie Sorder,区长 GROTON 市,Keith Hedrick,市长 GROTON 镇,Rachael Franco,市长,候补 John Burt,镇长 LEBANON 镇,Kevin Cwikla,镇长* LEDYARD 镇,Fred Allyn, III,市长* LISBON 镇,Thomas Sparkman,镇长 MONTVILLE 镇,Lenny Bunnell,市长 NEW LONDON 市,Michael Passero,市长 NORTH STONINGTON 镇,Robert Carlson,镇长*诺维奇,彼得·尼斯特罗姆 (Peter Nystrom),市长,候补 约翰·萨洛蒙 (John Salomone),市政经理 普雷斯顿镇,桑德拉·高蒂尔 (Sandra Gauthier),市长* 塞勒姆镇,埃德·赫米耶莱夫斯基 (Ed Chmielewski),市长 斯普拉格镇,谢丽尔·布兰查德 (Cheryl Blanchard),市长* 斯托宁顿镇,丹妮尔·切塞布罗 (Danielle Chesebrough),市长* 斯托宁顿自治市镇,迈克尔·谢弗斯 (Michael Schefers),市长 沃特福德镇,罗布·布鲁尔 (Rob Brule),市长* 温德姆镇,托马斯·德维沃 (Thomas DeVivo),市长,*候补 吉姆·里弗斯 (Jim Rivers),市政经理
提高充电电压并采用高容量的阴极(如锂钴氧化物(LCO))是扩大电池容量的有效策略。高压将揭示主要问题,例如电解质的低界面稳定性和弱电化学稳定性。从物质基因工程设计的角度设计高性能固体电解质至关重要。在这种情况下,构建了稳定的SEI和CEI界面层,并通过聚合物分子工程产生了4.7 V高压固体共聚物电解质(PAFP)。As a result, PAFP has an exceptionally broad electrochemical window (5.5 V), a high Li + transference number (0.71), and an ultrahigh ionic conductivity (1.2 mS cm − 2 ) at 25 ° C. Furthermore, the Li||Li symmetric cell possesses excellent interface stability and 2000 stable cycles at 1 mA cm − 2 .LCO | PAFP | LI电池在1200个周期后具有73.7%的保留能力。此外,它在高充电电压为4.7 V时仍然具有出色的循环稳定性。上面的这些特性还允许PAFP在高负载下稳定运行,显示出极好的电化学稳定性。此外,提出的PAFP提供了对高压抗性固体聚合物电解质的新见解。
是什么:弗拉格斯特AFF和Sunstate Environmental Services,Inc。的城市已与Wildcat Hill的Shincci烘干机合作开展飞行员项目。烘干机(一个低温污泥处理单元)结合了除湿和能量回收。这种环境利用能量意味着在干燥过程中没有浪费任何热量。
用于收集生物电信号的柔软且灵活的设备的开发正在为可穿戴和可植入应用获得动力。在这些设备中,有机电化学晶体管 (OECT) 因其低工作电压和大信号放大而脱颖而出,能够转换微弱的生物信号。虽然液体电解质已证明在 OECT 中有效,但它们限制了其工作温度,并且由于潜在的泄漏而对电子封装构成挑战。相反,固体电解质具有机械灵活性、对环境因素的稳健性以及桥接刚性干电子系统和柔软湿润生物组织之间界面的能力等优势。然而,很少有系统表现出与各种最先进的有机混合离子电子导体 (OMIEC) 的通用性和兼容性。本文介绍了一种高拉伸性、柔韧性、生物相容性、自修复性的明胶基固态电解质,该电解质与 p 型和 n 型 OMIEC 通道兼容,同时保持高性能和出色的稳定性。此外,这种非挥发性电解质在高达 120°C 的温度下仍保持稳定,即使在干燥环境中也表现出高离子电导率。此外,还展示了一种基于 OECT 的互补逆变器,其归一化增益创下了 228 V − 1 的最高纪录,相应的静态功耗超低为 1 nW。这些进步为从生物电子学到节能植入物的多种应用铺平了道路。
收到2023年10月5日;修订的手稿于2023年10月26日收到; 2023年11月1日接受; J-Stage Advance出版物在线发布于2023年12月15日初次评论:12天心理学系,Yamanashi大学,Chuo医学院(T.H.,T.N.,T.N.,T.Y.,M.U.,M.U.,T.K.,A.S。);富士富士市富士市心脏病学系(J.N.,J.O。);喀夫市科福市医院心脏病学系(Y.S.,T.S。); Kofu Kofu Jonan医院心脏病学系(H.T.); Kofu Yamanashi县中央医院内科部(K.U.); Yamanashi Yamanashi Kosei医院心脏病学系(T.A.),日本邮寄地址:Yamanashi大学心脏病学系医学博士Takeo Horikoshi,医学院心脏病学系,1110 Shimokato,Chuo 409-3898,日本。电子邮件:thorikoshi@yamanashi.ac.jp所有权利都保留给日本循环协会。有关权限,请发送电子邮件至cj@j-circ.or.jp ISSN-1346-9843
本管理咨询的目的是告知国防部负责采购和保障的副部长、国防部负责卫生准备政策和监督的副助理部长以及国防卫生局,他们对在国防部占用的场地或附近识别和报告非国防部固体废物燃烧的流程不足的担忧。在我们于 2023 年 9 月 25 日宣布的“对国防部对吉布提莱蒙尼尔营空气质量问题的管理审计”(D2023-D000RJ-0155.000) 期间,我们确定国防部没有实施足够的政策来识别和报告美国人员在应急设施或附近接触非国防部控制的燃烧坑的情况。具体而言,国防部官员没有制定政策,要求作战指挥官识别和报告非国防部控制的焚烧坑,这些焚烧坑处理非国防部产生的废物,并向作战司令部和参谋长联席会议 J-4 后勤局报告。国防部的政策只要求识别和报告焚烧国防部产生的固体废物的焚烧坑。这种疏忽可能会导致美国军人接触焚烧坑毒素,但健康记录中没有记录。我们根据普遍接受的政府审计标准,从 2023 年 11 月到 2024 年 4 月开展了支持此管理咨询的工作。