使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
纽约 - 食道癌1(NY-ESO-1)属于癌症抗原(CTA)家族,并被鉴定为家庭成员中最免疫原性肿瘤抗原(TAA)之一。鉴于其能够触发自发的体液和细胞免疫反应以及受限的表达,NY-ESO-1已成为癌症免疫疗法最有希望的靶标之一。癌症疫苗是癌症免疫疗法的重要元素,它通过主要的组织相容性复合物II(MHC-II)(MHC-II)和CD8 + T细胞通过主要的组织相容性I(MHC-I(MHC-I),通过主要的组织相容性复合物II(MHC-II)提出了TAA蛋白,肽和抗原性表位的外源性来源。这些机制进一步增强了对由细胞毒性T淋巴细胞(CTL)和辅助T细胞介导的TAA的免疫反应。ny-Eso-1的癌症疫苗有近二十年的历史,从2003年进行的第一次临床试验开始。目前针对NY-ESO-1的癌症疫苗具有多种类型,包括基于树突状细胞(DC)疫苗,肽疫苗,蛋白质疫苗,病毒疫苗,细菌疫苗,治疗性全肿瘤疫苗,全肿瘤细胞疫苗,DNA疫苗和MRNA疫苗,并促进了他们所在的效果,并构成了效率,并构成了这些疫苗。在这里,我们总结了针对NY-ESO-1进行固体癌症治疗的癌症疫苗的当前进展,旨在为将来的研究提供观点。
关于封装的细胞治疗(ECT)神经技术的ECT平台是一种基于细胞的基因治疗递送系统,旨在提供长期,持续的治疗蛋白递送,用于治疗慢性眼疾病。这个多功能平台由一个含有专有的同种异体视网膜色素上皮细胞(RPE)细胞的小型,可渗透的胶囊组成,该细胞经过基因设计,可生产用于靶向疾病的特定治疗蛋白。囊是手术植入的。到位后,胶囊的半渗透外膜允许必需的营养素进入,同时还可以使治疗蛋白进入眼睛,在那里他们可以前往位于眼睛的视网膜。外膜可保护封装的RPE细胞免受宿主的免疫系统的影响,从而有助于其随着时间的推移的生存和功能。
在本报告中,我们回顾了磁性材料间原子间交换的明确计算方法。这涉及通常称为海森堡交换,dzyaloshinskii-moriya相互作用和各向异性对称交换的交换机制。详细介绍了电子结构的微观理论(例如密度功能理论或动态均值理论)和原子间交换之间的联系。提取涉及数千原子的有效自旋哈密顿量的信息的不同方面,考虑到明显较少的原子(1-50),从电子结构计算中提取了数千个原子。提出了大量材料交换相互作用的示例,其中涉及3D时期的重元素,过渡金属之间的合金,助母子化合物,多层系统以及底物上的叠加剂和叠加剂,过渡金属氧化物,4F元素,4F元素,磁性
摘要:与单个有机或无机固体电解质相比,陶瓷中的聚合物复合固体电解质(PIC-CSE)具有重要的优势。在常规的PIC -CSE中,离子传导途径主要局限于陶瓷,而与陶瓷 - 聚合物界面相关的更快路线仍被阻塞。这一挑战与两个关键因素有关:(i)由于陶瓷聚集而建立广泛而不间断的陶瓷 - 聚合物接口的困难; (ii)陶瓷 - 聚合物界面由于其固有的不兼容而对导电没有反应。在这里,我们通过引入与聚合物兼容的离子液体(PCIL)提出策略,以在陶瓷和聚合物基质之间进行介导。这种介导涉及与陶瓷表面上与李 +离子相互作用的极地PCIL以及PCIL和聚合物链的极性成分之间的相互作用。该策略解决了陶瓷聚合问题,从而导致均匀的图片-CSE。同时,它通过建立互穿的通道来激活陶瓷 - 聚合物界面,从而促进Li +离子在整个陶瓷相,陶瓷 - 聚合物界面和中间途径的有效运输。因此,获得的PIC -CSE表现出高离子电导率,特殊的柔韧性和稳健的机械强度。其锂金属袋细胞的高能量密度为424.9 WH kg -1(不包括包装膜)和穿刺安全性。这项工作为使用商业生存能力设计PIC -CSE铺平了道路。■简介包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
可以从我们的研究应用程序PWC Plus中的监管视野扫描中获得有关该主题的正在进行的更新。在此处阅读有关可能性和提供的更多信息。
最初是公共场所:Alexandra的Grees-Bach; Chammartin,Frédérique; Abela,艾琳A;阿米科,帕特里亚;斯托克,马塞尔P;八山,安娜·L;哈斯,芭芭拉; Braun,Dominique L; Wordmans,MacéM;穆勒,托马斯F;塔姆,迈克尔;任何人,安妮特斯;穆勒(Mueller),尼古拉斯(Nicolas J);劳赫,安德里; Gónthard,Hundrych f;颜色,迈克尔T; Trkola,Alexandra; Epp,Selina; Amstutz,Alain; Schancer,Christof M;塔吉·赫拉维(Taji Heravi),阿拉巴马州; Matthaios的Papadimitriu-Olivggeris;卡斯特,亚历索;曼努埃尔(Manuel) Kusejko,Kathharina; Bucher,Heiner C;布里尔(Matthias);玩,本杰明;瑞士艾滋病毒队列研究和瑞士跨性别植物队列研究(2023)。第三次SARS-2疫苗在固体器官反式植物和HIV感染者(Coverll-2)中的抗体反应。开放论坛传染性疾病,10(11):OFAD536。doi:https://doi.org/1093/orid/ord536
AurélienCouette,Camille Tron,LéonardGolbin,Benedicte Franck,Pauline Houssel-Debry等。使用微型缩影设备在他克莫司的曲线下的区域:朝着固体器官移植的精密医学?欧洲临床药理学杂志,2023,79(11),第1549-1556页。10.1007/S00228-023-03566-5。hal-04227953
