通过导体驱动的电子电流可以通过著名的库仑阻力效应诱导另一个导体中的电流。在移动的流体和导体之间的接口上已经报道了类似的现象,但是它们的解释仍然难以捉摸。在这里,我们利用了非平衡的Keldysh框架,开发了一种相互交织的流体和电子流的量子机械理论。我们预测,全球中性液体可以在其流动的实心壁中产生电子电流。这种流体动力学库仑阻力均来自液体电荷波动与固体电荷载体之间的库仑相互作用,以及由实心声子介导的液体电子相互作用。我们根据固体的电子和语音特性以及液体的介电响应明确地得出了库仑阻力电流,这一结果与液态涂纸界面上的最新实验一致。此外,我们表明当前一代抵消了从液体到固体的动量转移,从而通过量子反馈机制降低了流体动力摩擦系数。我们的结果为控制量子水平控制纳米级液体流量提供了路线图,并提出了设计具有低流体动力摩擦的材料的策略。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
©2025 nvent。所有NVENT标记和徽标均由Nvent Services GmbH或其分支机构拥有或许可。所有其他商标都是其各自所有者的财产。
作为EQ生物固体生产的生物固体在袋子和容器中出售。这些产品的金属浓度具有较高的标准,并且必须满足特定的病原体和矢量吸引量的降低选项。希望获得或维持生物固体的EQ名称的设施必须具有每公斤20微克(µg/kg)的全氟辛酸(PFOA)和全氟辛烷硫酸盐(PFO)。必须通过季度样本结果证明符合此阈值。如果PFOA和PFO的组合总和为21 µg/kg或更高,则该设施必须遵循上述适当层的建议土地申请地点的建议,或安排对生物固醇的替代管理。
Agathe Naboulsi,Ronan Chometon,FrançoisRibot,Giao Nguyen,Odile Fichet等。ACS应用材料和界面,2024,16(11),pp.13869-110.1021/acsami.3C19249̄。̄-046996222
3.1 Introduction .............................................................................................................................................. 71 3.2 Analysis of the metal support .............................................................................................................. 71 3.3 Deposition of bilayer NiO-YSZ anode by APS ............................................................................... 78 3.3.1 Preparation of NiO-YSZ mixed powder by spray drying .......................................................... 79 3.3.2 Optimization of APS deposition parameters ................................................................................. 83 3.2.3 Deposition of bilayer anode on ITM .............................................................................................. 94 3.4 Deposition of 8YSZ/GDC10 bilayer electrolyte by RMS with PEM system .......................... 99 3.4.1 Deposition of 8YSZ electrolyte layer ........................................................................................... 101 3.4.2 Deposition of GDC10 as electrolyte layer and buffer layer ......................................................................................................... 107 3.5结论...................................................................................................................................................................................................................................................................................
《材料》(ISSN 1996-1944)于 2008 年创刊。该期刊涵盖 25 个综合主题:生物材料、能源材料、先进复合材料、先进材料特性、多孔材料、制造工艺和系统、先进纳米材料和纳米技术、智能材料、薄膜和界面、催化材料、碳材料、材料化学、材料物理、光学和光子学、腐蚀、建筑和建筑材料、材料模拟和设计、电子材料、先进和功能性陶瓷和玻璃、金属和合金、软物质、聚合物材料、量子材料、材料力学、绿色材料、通用材料。《材料》为投稿高质量文章和利用其庞大的读者群提供了独特的机会。
施用生物固体可以提高土壤肥力和作物产量,但也伴随着重金属和抗生素引入的风险。在重金属污染环境下,利用丛枝菌根真菌 (AMF) 是一种有效的策略,可以增强土壤微生物群落稳定性和植物对重金属的耐受性,并减少抗生素抗性基因 (ARG) 的传播。本研究通过盆栽试验探究了接种 AMF 对土壤和植物重金属含量以及土壤微生物群落的影响。结果表明,接种 AMF 显著提高了植物生物量,并降低了土壤和植物重金属含量。虽然接种 AMF 不会改变细菌和真菌群落的组成,但在较高的生物固体浓度下,它增加了细菌的多样性。值得注意的是,接种 AMF 增强了微生物网络的复杂性,并增加了关键类群的丰度。此外,在接种 AMF 的土壤中,一些对重金属具有高抗性的有益微生物得到了富集。宏基因组分析显示,与未接种AMF的土壤相比,接种AMF的土壤中移动遗传元件(MGE)基因IS91减少,重金属抗性基因增加。MGE介导的耐药基因(ARG)扩散减少的可能性是本研究的主要发现之一。需要注意的是,本研究还检测到接种AMF的高生物固体改良土壤中少数耐药基因的富集。总体而言,接种AMF可能是一种有效的农业策略,可以减轻与生物固体、重金属和抗生素耐药性相关的环境风险,从而促进可持续的土壤管理和健康。
1早期癌症试验中心“ CLIP2”,Chu Timone,公共援助H pitales de Marseille,Aix-Marseille University,法国13005 Marseille; etienne.gouton@gmail.com(例如); nausicaa.malissen@ap-hm.fr(N.M.); nicolas.andre@ap-hm.fr(N.A。); arnaud.jeanson@ap-hm.fr(A.J.); annick.pelletier@ap-hm.fr(A.P.); Albane.testo-ferry@ap-hm.fr(A.T.-F。); caroline.gaudy@ap-hm.fr(C.G.-M。); laetitia.dahan@ap-hm.fr(L.D.); emeline.tabouret@ap-hm.fr(E.T。); thomas.chevalier@ap-hm.fr(T.C.); laurent.greillier@ap-hm.fr(L.G.)2种皮肤病学和皮肤癌系,AIX Marseille大学,APHM,CRCM INSERM U1068,CNRS U7258,CHU TIMONE,13005 MARSEILLE,法国Marseille 3 Smartc单位,Cancérologiede Marseille的研究中心 Hospitals of Marseille, Aix-Marseille University, 13005 Marseille, France 5 Institute of Neurophysiopathol, Aix-Marseille University, Aphm, CNRS, INP, neuro-oncology service Chu Timone, 13005 Marsille, France 6 Department of Medical Oncology, CHU Timone, Marseille, Aix-Marseille University, 13005 Marseille, France 7 Multidisciplinary CNRS,INSERM,CRCM,APHM,13015 MARSEILLE,法国Marseille *通讯:Pascale.tomasini@ap-hm.fr
在这项新研究中,科学家将理论模型与尖端实验相结合,在偶极超固体中创建并观察涡旋——这一壮举被证明极具挑战性。因斯布鲁克团队此前在 2021 年取得了突破,在铒原子超冷气体中创建了第一个长寿命二维超固体,这本身就是一项艰巨的任务。
