基于电源材料的制冷系统被认为是当前基于蒸气压缩设备的潜在替代方案。这些系统提供更接近Carnot限制的晶状体,同时还与微型化,紧凑性和集成到电子设备和可穿戴设备中。已经提出了几种原型,主要依靠机械和流体运动进行传热,这阻止了这些系统达到更高的操作频率,良好的热接触和低损失。一动不动的电源固态设备已经概念化了,但是它们的相对复杂性已阻碍了原型。在这项工作中,我们研究了依靠热电开关来控制热流的固态电局冷却器的性能。我们的设备操作模式通过通过热开关被动吸收热量来最大程度地减少能源消耗。在稳态热传播模型之后,评估了一组广泛的参数,覆盖运行温度,材料特性,几何特征,操作频率和材料极化损失,评估了一组广泛的参数,评估了施加的电流,吸收的热量,功耗和性能。我们估计COP高于1的COP,最大温度(对于不同的材料特性,几何因素或EC损失)和绝热温度的变化比施加的温度跨度高1 k。较高的温度跨度在6至10 K的率COP之间的0.1阶段,导致功耗显着增加。这些结果旨在在选择材料,温度和几何形状方面指导对这些固态设备的研究。
饲喂试验后对斑节对虾幼虾进行的氨基酸分析表明,饲喂 50% FRB 替代 SBM 的虾的赖氨酸水平明显高于对照组。赖氨酸和各种其他氨基酸对虾的味道至关重要。这些氨基酸的增加将进一步增强理想的味道,而下降则会导致虾的感官特性发生变化。此外,饲喂 50% FRB 的斑节对虾的谷氨酸(https://doi.org/10.1081/FRI-100000515)——一种负责海鲜产品鲜味的物质——高于对照组。这些结果表明,FRB 可以改善斑节对虾的感官特性,对虾味道至关重要的氨基酸数量增加就是明证。
Fabrication Equipment Selection ............................................................................. 10 Characterization Equipment Selection ..................................................................... 11 Site Selection........................................................................................................ 11 Tool Installation .................................................................................................... 12 Comparison of TPV cells — Antora's LRIP Toolset Versus Control Toolset................... 12 Discussion of Available Component Suppliers or Associated Partners ......................... 12 Task 4: Demonstration of Low-Rate Initial Production of Thermophotovoltaic Cells ......... 13 Discussion ................................................................................................................ 14 Knowledge Transfer .................................................................................................. 14
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
摘要 随着电动汽车的普及和无线电子设备的扩展,对二次电池的需求正在迅速增长。 然而,使用最广泛的锂离子电池经常发生火灾事件,限制了市场的增长。 为了避免易燃性,基于固体电解质的系统在下一代锂离子电池中越来越受到关注。 然而,离子电导率的限制和高制造成本等挑战需要进一步的研究和开发。 在本研究中,我们旨在确定一种尚未得到广泛探索的新型氮基固体电解质材料。 我们提出了一种通过高通量筛选(HTS)选择最终材料的方法,详细说明了用于材料选择和性能评估的方法。 此外,我们展示了氮取代材料与碳和氧置换的从头算分子动力学(AIMD)计算和结果,包括阿伦尼乌斯图、活化能和锂离子电导率最高的材料在 300K 下的预测电导率。虽然性能尚未超越传统固态电解质的离子电导率和活性,但我们的结果为探索和筛选新型固态电解质材料提供了系统框架。该方法也可以应用于探索不同的电池材料,并有望为下一代储能技术的创新做出重大贡献。
为了确定该标准的特定要求是否符合最终值,观察或计算出测试或分析结果的计算,应按照IS 2:2022“数值(第二修订)的圆形规则(第二修订)的规则进行四舍五入”。保留在舍入价值中的重要位置的数量应与此标准中指定值的数量相同。注意 - 他们的文档的技术内容尚未包含在与相应的IEC标准相同的详细信息中,请参阅相应的IEC 62314:2022或善意联系:Electrotechnical Department of Indian Acdentards 9,Bahadur Shah Zafar Marg,New Delhi-110002 eletdembis:eetdemdect.bis.gov.iny eetdement@eetdempect.gov.in.gov.in.gov.iny new 23.n2 in.cov.in232。
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂
Minkewicz,Justyna,Jones,Gareth M.,Ghannizadeh,Shaghayegh,Bostonchi,Samira,Wasely,Thomas J.,Yamini,Yamini,Aminorroya和Nekouie,Vahid,Vahid(2023)。固态电解质的大规模制造:挑战,进度和前景。[文章][文章][文章]
固态电解质(SSE)是固态锂电池中的重要组成部分,对能源储能应用具有很大的希望。本综述提供了固态电池(SSB)的概述,并讨论了电解质的分类,重点是与氧化物和硫化物基于SSE相关的挑战,尤其是关于接口和化学稳定性的挑战。本评论还探讨了在大规模制造中形成和烧结SSE的方法,包括生产基于氧化物和硫化物的密集薄膜的已建立和新技术。此外,还讨论了添加剂制造(AM)在SSE生产中的潜在应用。最后,本文总结了SSE的大规模制造,并为可持续的SSB开发目标提供了前景。本综述中提供的见解有助于SSE技术对固态锂电池的理解和进步