Michael Allen博士博士 杰出教授名誉教授。 加利福尼亚大学河滨分校的微生物学和植物病理学系Cameron Barrows博士,博士荣誉保护生态学家。 加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。 自然资源,森林和气候变化硕士。 俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会Michael Allen博士博士杰出教授名誉教授。加利福尼亚大学河滨分校的微生物学和植物病理学系Cameron Barrows博士,博士荣誉保护生态学家。 加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。 自然资源,森林和气候变化硕士。 俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会加利福尼亚大学河滨分校的微生物学和植物病理学系Cameron Barrows博士,博士荣誉保护生态学家。加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。 自然资源,森林和气候变化硕士。 俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会加州大学保护生物学中心,河畔科林·巴罗斯(Riverside Colin Barrows),联合创始人,仙人掌到云研究所苏西·博伊德(Susy Boyd),Mnr。自然资源,森林和气候变化硕士。俄勒冈州立大学Pat Flanagan,学士 生物学。 加利福尼亚州立大学,长滩罗宾·科巴利(M.S.) 生物学和植物生态学。 加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会俄勒冈州立大学Pat Flanagan,学士生物学。加利福尼亚州立大学,长滩罗宾·科巴利(M.S.)生物学和植物生态学。加利福尼亚大学,河滨拱门麦卡洛克,硕士 计算机科学。 Azusa太平洋大学。 B.S地质 /计算机科学。 加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。 加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会加利福尼亚大学,河滨拱门麦卡洛克,硕士计算机科学。Azusa太平洋大学。B.S地质 /计算机科学。加利福尼亚州立大学,多明格斯山琼·泰勒(Dominguez Hills Joan Taylor),科切拉山谷山脉保护委员会,沙漠山脉和野国保护区的董事会。加利福尼亚保护委员会主席和塞拉俱乐部的加利福尼亚州/内华达州遗架委员会
面对气候变化的不断升级威胁需要创新和大规模的交流。本文提出了一项大胆的建议,以在遥远的玄武岩海床中采用埋藏的核爆炸,以粉碎玄武岩,从而通过造型岩石风化(ERW)加速了碳固存。通过精确定位海底下方的爆炸,我们旨在弥补碎屑,辐射和能量,同时确保在足够的地表下迅速岩石风化,以使大气中的碳含量有意义。我们的分析概述了有效的碳捕获和最小的侧支效应所必需的参数,强调对Gigatons的收益率对于全球气候影响至关重要。尽管这种方法可能看起来很激进,但我们通过检查安全因素,保存当地生态系统,政治考虑和财务生存能力来说明其可行性。这项工作主张将核技术重新构想不仅是破坏力的力量,而且是脱碳的潜在催化剂,从而邀请进一步探索针对气候变化的领域中的开拓解决方案。
●土壤碳固化是捕获并存储在土壤中的大气二氧化碳的过程,形成了自然全球碳循环的一部分。●在不受干扰的天然生态系统中,碳可以存储在土壤中数千年。然而,自然土地向农田的转化使土壤有机碳库存枯竭,并将这种存储的碳释放到大气中。●牲畜放牧系统负责在过去的六十年中损失大量土壤碳。●再生放牧 - 涉及在短时间内在陆地上旋转牲畜 - 已提议作为改善土壤碳储备和抵消牲畜养殖排放的解决方案。●最近的估计表明,改善放牧管理可能会在植被和土壤中占据约63千吨(十亿吨)的碳。●但是,一旦考虑了放牧动物的甲烷和氧化氧化物的排放,估计需要135吉甘吨的碳吸收物来抵消这些排放。●依靠土壤碳固执来抵消放牧系统的排放,因为碳存储是有限的和可逆的,并且甲烷和一氧化二氮的排放量增加可能会抵消土壤中碳固相机的任何收益。再生放牧的影响也高度依赖于上下文。●尽管有不确定性,但在世界某些地区,土壤中的碳中的碳可能导致中期降低气候变化。●旨在维持或改善土壤碳的管理实践还提供其他好处,例如改善土壤健康,侵蚀控制和减少排放强度,产量和农民的收入有积极的结果。
Pharma Innovation Journal 2024; 13(10):27-33 ISSN(E):2277-7695 ISSN(P):2349-8242 TPI 2024; 13(10): 27-33 © 2024 TPI www.thepharmajournal.com Received: 24-07-2024 Accepted: 02-09-2024 Trishala Kalyani Department of Agronomy, School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India Anuj Singh Payal Department of Agronomy, School of Agriculture, Graphic Era Hill印度北阿坎德邦Dehradun大学,Simran Kumari农艺学系,图形农业学院,图形时代希尔大学,印度Dehradun,Dehradun,印度北阿拉克邦,Jyoti Bala农学系,Swaminathan女士,Swaminathan女士,Shoolinii Inoverasation of Biotechni and Inding noessions Sciisens and Sciiens,Sciiznoly Sciiss,Himach prad pradate hemvati nandan bahuguna Garhwal大学Agronomy,印度北阿坎德邦Srinagar,Srinagar
投资:政府和企业应通过混合财务,公司问责制和扩大碳市场来降低私人气候投资。激励措施:政策制定者应采取措施加速Agrifood系统转型,例如重新利用有害补贴和确保政策连贯性。信息:使用数字技术改善温室气体监控,报告和验证(MRV)系统可以帮助解锁该行业的气候融资。创新:扩大具有成本效益的缓解技术和增加的研发投资可以推动农业系统的未来转型。
1。引言全球变暖是由于大气中温室气体(GHG)的积累,例如二氧化碳(CO 2),地球温度的长期升高。尽管CO 2捕获热量的能力小于一氧化二氮(N 2 O)(相对于CO 2的全球变暖潜力(GWP)为265个265个)和甲烷(CH 4)(CH 4)(GWP在100年中为100年或相对于CO 2的20年中的86岁),但CO 2的生产是CO 2的生产。在2022年,CO 2的排放占国家温室气体总排放量的60.6%(不包括土地使用,土地利用变化和林业(LuluCF)部门),而CH 4和N 2 O分别占29.1和9.1%(EPA,2024)。碳固相可以通过从大气中去除CO 2来帮助减少全局变暖,从而抵消与大气中高浓度的CO 2相关的变暖影响。土壤碳很重要,因为它在缓解气候变化,增强土壤生育能力和支持整体生态系统健康方面起着至关重要的作用。在全球范围内,土壤中含有大约1417 GT的碳,这是大气中碳量的两倍以上,大约是存储在活植物中的三倍。这使土壤成为最大的陆生碳池,突出了其在全球碳周期中的关键作用及其隔离大气CO 2的潜力(Lal,2004)。爱尔兰的草原土壤储存了大量碳,大约440 tco₂/公顷,或估计在所有矿物质土壤中估计有1,800吨煤(Paul等,2018)。有效地管理土壤碳可以显着降低大气中的浓度并提高农业生产力。
碳固存的过程或碳的通量构成了全球碳循环的一部分。碳在土壤和上述地面环境之间的运动是双向的,因此土壤中的碳存储反映了相反的积累和损失过程之间的平衡。这种土壤碳的水库确实是动态的,不仅碳不断进入和离开土壤,而且土壤碳本身在几个水池之间进行了分割,其停留时间跨越了几个数量级。土壤碳也不是惰性储层,与之相关的有机物对于维持土壤生育力至关重要,并且在诸如营养循环和气态排放之类的各种现象中起着重要作用。在其他地方可以找到土壤碳和有机物的详细描述和分析(Schnitzer,1991; FAO,2001)。
审查讨论了非生物和生物技术,并描述了隔离二氧化碳(CO 2)所涉及的力学。试图降低大气CO 2的净上升速率,碳封存需要将CO 2运输或存储到各种长寿命的全球储层中,例如生物,地质,教育和海洋层。碳固化是通过生物或地质机制从大气中去除二氧化碳的过程。将碳保持在稳定的固态的方法称为隔离。技术,这些技术在审查的主体中进行了解释,以降低土地利用变化,能源,工艺行业以及培养土壤的过程,以提高二氧化碳的大气浓度。
农林业可以通过减少4.1 mtco 2 e到2030的雄心将温室气体(GHG)排放降低32%。也有望为种植150亿棵树木的全国目标做出贡献,恢复了1,060万公顷的退化土地,其中农林业被分配了300万公顷,到2032年,将树木覆盖至30%(肯尼亚政府,2023年)。大规模实施农林业可以提高土壤的生育能力,作物产量增强了水周期,包括提供多种产品,从而改善农民生计和食品和食品和养分安全,并有助于气候应变。关于这些野心的一个重大挑战是监视和报告农林业的潜力。农林业系统很复杂,因为树木所在的树木所在以及相关的管理实践的土地使用。这种复杂性限制了将农林业限制在许多国家的国家温室气体清单中,从而影响了温室气体排放的两个基本方面。首先,是如何整合农业条约对现有农业,林业和其他土地使用部门的贡献的挑战。2020)。第二,在不同的农林业系统下缺乏碳库存和股票变化的数据,这限制了扩大农林业所需的财务和技术支持的访问(Rosenstock等人。2019)。数据的缺乏归因于缺乏对碳库存的量化(包括果树)的可靠方法。