摘要。生成模型允许创建高度现实的人造样品,从而在医学成像中开放了有希望的应用。在这项工作中,我们提出了一种基于多阶段编码器的方法,以将生成对抗网络(GAN)的发电机倒入高分子胸部X光片。这可以直接访问其隐式形成的潜在空间,使生成模型更容易被研究人员访问,并使其能够将生成技术应用于实际患者的图像。我们研究了此嵌入的各种应用程序,包括图像压缩,编码数据集中的分离,引导图像ma-nipulation以及创建程式化样品的创建。我们发现,这种类型的GAN反转是胸部X光片建模领域的一个有希望的研究方向,并为将现实的X射线样品合成与放射学图像分析结合起来开辟了新的方法。
人工神经网络是一种基于互连连接构建多个处理单元的计算方法。该网络由任意数量的单元或节点或单元或神经元组成,将输入集连接到输出。它是计算机系统的一部分,模仿人类大脑分析和处理数据的方式。自动驾驶汽车、字符识别、图像压缩、股票市场预测、风险分析系统、无人机控制、焊接质量分析、计算机质量分析、急诊室测试、石油和天然气勘探以及各种其他应用都使用人工神经网络。预测消费者行为、创建和理解更复杂的买家细分、营销自动化、内容创建和销售预测是 ANN 系统在营销中的一些应用。本文回顾了人工神经网络的最新发展和应用,以便通过回顾和分析已发表论文中的最新成果来推动该研究领域的发展。因此,可以介绍开发的 ANN 系统,并介绍 ANN 系统的新方法和应用。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
人工智能属于科学的领域,该领域与设计机器可以自行学习而不会受到任何人的干扰的想法。由于ML,人类可以设计像人类一样思考的机器,并且可以从人类这样的经验中学习。我们今天看到的许多实践示例,例如解决各种优化并发症,对大量数字化数据进行分类并获得所需模式,根据自然语言处理和深度学习。更多的层和模型的存在更深,那么整体性能将更高。不同的深度学习算法是多层前ePtron神经网络,卷积神经网络,经常性神经网络,长期短期记忆,深玻尔兹曼机器(DBM),深信信念网络,可在顺序数据(信号和文本),复发性神经网络上起作用。现在,超级计算机已广泛用于编辑和分析给定患者的图像并使用图像,它通过使用卷积神经网络更改维度并分析用户给定的输入。此卷积神经网络通过使用不同的数据集并将图像压缩到计算机格式,从而可以通过人工智能处理数据并使用不同的层(例如
摘要(150个单词)现代镜头设计能够解决> 10吉像素,而相机框架速率和高光谱成像的进步使Terapixel/S数据获取成为了真正的可能性。阻止这种高数据率系统的主要瓶颈是功耗和数据存储。在这项工作中,我们表明模拟光子编码器可以应对这一挑战,从而可以使用比数字电子设备低的功率来实现高速图像压缩。我们的方法依赖于硅 - 光子学前端来压缩原始图像数据,预言了能量密集型图像调理并减少数据存储要求。压缩方案使用被动无序的光子结构来对原始图像数据进行内核型随机投影,其功耗最少和低潜伏期。后端神经网络可以以超过90%的结构相似性重建原始图像。此方案有可能使用小于100 FJ/Pixel处理Terapixel/S数据流,从而为超高分辨率数据和图像采集系统提供了途径。
摘要。最近一年,大脑成像技术在检查和专注于解剖学和脑功能的新视野中一直发挥着重要作用。图像处理机制被广泛用于医学中,以增强早期检测和治疗。分割和分类对于MRI脑图像处理是至关重要的作用。这项工作的目的是开发一种系统,该系统通过提出的图像分类器的过程来帮助肿瘤检测和脑MRI图像识别。在这项工作中,我们建议一个深层神经网络进行分类和细分。这项工作提出了使用深波自动编码器(DWA)的图像压缩技术,该技术结合了将自动编码器的主要功能与小波变换的图像降解属性最小化的能力。两者的组合对减小与DNN的其他分类任务的函数的大小相同。已经消除了脑系统,并考虑了提出的DNN-DWAE图像分类。与不同现有方法相比,DNN-DWAE分类器的性能评估已得到改善。
DNA 因其固有的生物分子结构而具有惊人的存储密度和长期稳定性,因此作为数据存储解决方案具有巨大的潜力。然而,开发这种新型介质也面临着一系列挑战,特别是在解决存储和生物操作中出现的错误方面。这些挑战还受到 DNA 序列的结构限制和成本考虑的影响。为了应对这些限制,我们率先开发了一种新型压缩方案和一种利用神经网络进行 DNA 数据存储的尖端多描述编码 (MDC) 技术。我们的 MDC 方法引入了一种将数据编码到 DNA 中的创新方法,专门设计用于有效抵抗错误。值得注意的是,我们的新压缩方案优于用于 DNA 数据存储的经典图像压缩方法。此外,我们的方法比依赖自动编码器的传统 MDC 方法更具优势。其独特优势在于它能够绕过大量模型训练的需要,并且具有增强的微调冗余级别的适应性。实验结果表明,我们的解决方案与该领域的最新 DNA 数据存储方法具有优势,具有卓越的压缩率和强大的抗噪能力。
计算机科学和信息技术(HSLU),瑞士创新公园中央或技术论坛ZUG寄养是创新和技术驱动公司的理想环境。与信息技术,高科技,金融科技和MedTech集群中的众多著名公司一起,并嵌入了以技术为导向的机构中,Zug提供了对庞大的人才库的访问权限。Zug是加密山谷的核心,是区块链技术公司和专家的热点。此外,诸如Zug市的Smart City战略或具有移动性中心的Tech Cluster Zug之类的本地举措有助于创建面向未来的技术生态系统。«dotphoton位于ZUG,是一家深入的技术初创企业,专门针对专业应用和AI的图像压缩。Zug的工业品种和靠近投资者和技术人才,有助于我们有效地塑造专业图像的未来。自然界中,Zug即使在动态的启动环境中,ZUG也有助于支持Dotphoton员工的健康生活与生活平衡。我们很高兴将祖格称为我们的新家。» Dotphoton首席执行官Eugenia Balysheva
DNA由于其固有的生物分子结构而引起,由于其令人印象深刻的储存密度和长期稳定性,它具有出色的潜力作为数据存储解决方案。但是,开发这种新型媒介有其自身的挑战,尤其是在解决储存和生物操纵引起的错误时。这些挑战进一步由DNA序列的结构限制和成本考虑。响应这些局限性,我们开创了一种新颖的压缩方案和使用神经网络进行DNA数据存储的尖端多重描述编码(MDC)技术。我们的MDC方法引入了一种创新方法,将数据编码为DNA,该方法专门设计用于有效承受错误。值得注意的是,我们的新压缩方案过于表现DNA-DATA存储的经典图像压缩方法。此外,我们的方法比依赖自动编码器的常规MDC方法具有优越性。其独特的优势在于它绕过对广泛模型训练的需求及其对微调冗余水平增强的适应性的能力。实验结果表明,我们的解决方案与现场最新的DNA数据存储方法竞争,提供了出色的压缩率和强大的噪声弹性。
摘要。在数字时代,在社交媒体上共享图片已成为一个共同的隐私问题。为了防止私人图像被窃听并破坏,开发了安全有效的图像密封造影,图像加密和图像身份验证非常困难。深度学习为数字图像安全提供了解决方案。首先,我们就图像隐志中的深度学习应用做出了总体结论,以产生五个方面:封面图像,seego-image,嵌入变化概率,无封面隐肌和Steg-分析。第二,我们还将和比较了六个方面中使用的深度学习方法:图像加密从图像压缩,图像分辨率改进,图像对象检测和分类,钥匙生成,端到端图像加密和图像加密式分析。第三,我们从五个角度收集图像身份验证中的深度学习方法:图像伪造检测,图像产生,图像水印提取和检测,图像水印攻击以及图像水印。最后,我们总结了图像密集术,图像加密和图像身份验证中深度学习利用的未来研究方向。©2021光学仪器工程师协会(SPIE)[doi:10 .1117/1.OE.60.12.120901]