图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
本文介绍了用于实施多播带通滤波器的紧凑拓扑。设计使用互连的多模谐振器(MMR)和多级阻抗结构来实现特定的频率响应。这种方法简化了针对4G和5G应用的四倍带通滤波器的设计。由于无法调整线路宽度后的构建后,共振位置需要调整。为了评估滤波器设计过程,尽管未在设计阶段进行模拟或优化,但设计,制造和分析了包含MMR的原型,并证明了分析预测和实验测量之间的紧密比对。此外,建立了设计标准,以通过仅改变MMR的几何参数来促进多频道响应的快速合成。使用CST软件对此结构进行了模拟,以确认所提出的理论的准确性。一种反向偏置的变量二极管,该变量二极管用作具有特定入学的电容器,可用于提供必要的调谐能力。本文还突出了变量二极管的接收对共振位置调整的影响。为了验证设计,作者提出了拟议过滤器的制造原型,该原型的特征是1.8、2.1、2.7和3.4 GHz的四分之一频段,达到了大于-15 dB的衰减。四分之一频段过滤器主要用于无线电信网络。由于其专门设计,这些过滤器可以同时处理多个频段,从而提高通信质量并增加拥挤和干扰的环境中的网络容量。
2 泰国曼谷拉卡邦先皇理工学院信息技术学院,1 Chalong Krung 1 Alley,Ladkrabang,Bangkok 10520,泰国电子邮件:a treesukon.tr@kmitl.ac.th,b,* suvit@it.kmitl.ac.th(通讯作者)摘要。深度学习模型构建中监督学习的关键要求之一是用于训练和验证的数据集。为了收集数据集,从不同资源获取各种质量的图像是不可避免的,这被认为会影响监督模型的性能。本研究旨在证明涉及从两个不同资源获得的高和标准数据集的图像质量对模型性能的影响。对具有革兰氏阳性菌和革兰氏阴性菌数据集的各种细胞特征进行了试验。这些不同的数据集被匹配并贡献了 5 个案例;案例 1:使用高质量图像进行训练和测试,案例 2:使用高质量图像进行训练并使用标准质量图像进行测试,案例 3:使用标准质量图像进行训练和测试,案例 4:使用标准质量图像进行训练并使用高质量图像进行测试,以及案例 5:结合这两种图像质量进行训练和测试。实施了预训练的 CNN 模型来证明使用和不使用分层 K 折交叉验证的目的。重新训练模型的结果表明,高性能模型需要从与测试集相同资源中获得的高质量数据集,在具有挑战性的未知数据集上进行测试时,这些数据集可产生超过 90% 的所有性能评估指标。这项研究为构建可用于自动化微生物诊断的高性能模型提供了宝贵的见解,对公共卫生和临床实践产生了影响。
材料和方法 这项回顾性单中心研究考虑纳入 2019 年 11 月至 2021 年 3 月在 Gustave Roussy 癌症园区(法国维尔瑞夫)获取的共 250 张多参数脑 MRI。定义了独立的训练(107 例,年龄 55 岁±14 岁,58 名女性)和测试(79 例,年龄 59 岁±14 岁,41 名女性)样本。患者患有神经胶质瘤、脑转移、脑膜瘤或无增强病变。在所有病例中均获取了具有可变翻转角的梯度回波和涡轮自旋回波对比后 T1 序列。对于形成训练样本的病例,还获取了使用 0.025 mmol/kg 造影剂注射的“低剂量”对比后梯度回波 T1 图像。以标准剂量 T1 MRI 为参考,训练了一个深度神经网络来合成增强低剂量 T1 采集。训练完成后,对比增强网络用于处理测试梯度回波 T1 图像。然后由两名经验丰富的神经放射科医生进行读片,以评估原始和处理后的 T1 MRI 序列的对比增强和病变检测性能,以快速自旋回波序列为参考。结果对于增强病变的病例,处理后图像的对比噪声比(44.5 比 9.1 和 16.8,p<.001)、病变与脑组织比(1.66 比 1.31 和 1.44,p<.001)和对比增强百分比(112.4% 比 85.6% 和 92.2%,p<.001)均优于原始梯度回波和参考快速自旋回波 T1 序列。两位读者都更喜欢处理后的 T1 的整体图像质量(平均评分为 3.4/4 比 2.7/4,p<.001)。最后,对于大于 10 毫米的病变,所提出的处理方法将梯度回波 T1 MRI 的平均灵敏度从 88% 提高到 96%(p=.008*),而误检率则没有差异(两种情况下均为 0.02/例,p>.99)。考虑所有大于 5 毫米的病变时观察到了相同的效果:灵敏度从 70% 提高到 85%(p<.001*),而误检率保持相似(0.04/例 vs 0.06/例,p=.48)。如果包括所有病变,无论其大小如何,原始和处理后的 T1 图像的灵敏度分别为 59% 和 75%(p<.001*),相应的误检率为 0.05/例和 0.14/例(p=.06)。
摘要 - 感谢任务驱动的图像质量增强(IQE)模型等最新成就,例如ESTR [1],图像增强模型和视觉识别模型可以相互增强彼此的定量,同时产生我们人类视觉系统可感知的高质量处理的图像。但是,现有的任务驱动的IQE模型倾向于忽略一个基本的事实 - 不同级别的视力任务具有不同的图像特征要求,有时甚至相互矛盾。为了解决这个问题,本文提出了针对医疗图像的任务驱动IQE的广义梯度促进(GradProm)培训策略。具体来说,我们将任务驱动的IQE系统分为两个子模型i。e。,一种用于图像增强的主流模型,也是视觉识别的辅助模型。在训练期间,GradProm仅使用视觉识别模型和图像增强模型的梯度更新图像增强模型的参数,但是只有当这两个子模型的梯度以相同的方向对齐时,这是通过其余弦相似性来衡量的。如果这两个子模型的梯度不在同一方向上,则GradProm仅使用图像增强模型的梯度来更新其参数。从理论上讲,我们已经证明了图像增强模型的优化方向不会被GradProm的实现下的辅助视觉识别模型偏差。从经验上讲,对四个公开但具有挑战性的医学图像数据集的广泛实验结果证明了Gradprom的表现优于现有最新方法。
摘要背景:最近,计算机断层扫描 (CT) 制造商已经开发出基于深度学习的重建算法来弥补迭代重建 (IR) 算法的局限性,例如图像平滑和空间分辨率对对比度和剂量水平的依赖性。目的:评估人工智能深度学习重建 (AI-DLR) 算法与混合 IR 算法对胸部 CT 图像质量和剂量减少的影响,对比不同临床适应症。方法:在用于胸部 CT 条件的五个剂量水平 (CTDI vol: 9.5/7.5/6/2.5/0.4 mGy) 下对 CT 美国放射学会 (ACR) 464 和 CT Torso CTU-41 体模进行采集。使用滤波反投影、两级 IR(iDose 4 级别 4 (i4) 和 7 (i7))和五级 AI-DLR(精确图像;更平滑、平滑、标准、清晰、更清晰)重建原始数据。计算了噪声功率谱 (NPS)、基于任务的传递函数和可检测性指数 (d ′):d ′ 模型检测软组织纵隔结节(纵隔内的低对比度软组织胸部结节 [LCN])、毛玻璃影 (GGO) 或高对比度肺 (HCP) 病变。两名放射科医生独立评估胸部拟人幻影图像的主观图像质量。他们使用常用的四或五分量表评估了纵隔图像的图像噪声、图像平滑度、纵隔血管与脂肪之间的对比度、实质图像的支气管与肺实质之间的视觉边界检测以及整体图像质量。结果:从标准到平滑水平,平均而言,噪声幅度降低(所有剂量水平:纵隔图像为 - 66.3% ± 0.5%,实质图像为 - 63.1% ± 0.1%),平均 NPS 空间频率降低(所有剂量水平:纵隔图像为 - 35.3% ± 2.2%,实质图像为 - 13.3% ± 2.2%),三种病变的可检测性 (d′) 增加。从标准到清晰水平则发现了相反的模式。从平滑到清晰水平,
提交日期:2024 年 5 月 4 日 修订日期:2024 年 6 月 11 日 接受日期:2024 年 7 月 3 日 发布日期:2024 年 7 月 3 日 摘要 在 RSI Siti Rahmah Padang 的放射科设施中,对创伤病例 CT 扫描脑部检查中切片厚度变化对图像质量的差异进行了分析研究。本研究旨在确定创伤病例 CT 扫描脑部检查中 3 毫米、5 毫米和 7 毫米不同切片厚度的图像质量差异,以及在创伤病例的 CT 扫描脑部检查中,哪种切片厚度能够产生最佳图像质量以确立诊断。本研究于 2022 年 1 月至 2022 年 6 月进行,采用定量研究和实验方法,采用目的抽样技术,并使用加权平均分数公式和 SPSS Friedman 方法处理分发给受访者的问卷数据。根据加权平均得分公式,切片厚度变化3 mm、5 mm和7 mm的最高均值为3 mm的切片厚度,均值为3.64,对比度分辨率均值为3.67,噪声为3.49,创伤病例CT脑部检查骨窗结果平均为t3.74。根据Friedman方法的SPSS结果发现,创伤病例CT脑部检查中3 mm、5 mm和7 mm切片厚度变化的结果存在显著差异(p值<0.05),这表明Hₒ被拒绝而Hₐ被接受。CT脑部检查中显示创伤的良好切片厚度变化是骨窗中3 mm的切片厚度,因为如果有非常小的骨折,可以更清楚地看到。关键词:脑 CT 扫描,创伤,切片厚度,对比度分辨率背景
摘要。生成图像重建算法(例如调节条件扩散模型)在医学成像领域越来越流行。这些功能强大的模型可以将低信号比率(SNR)输入转换为具有高SNR的出现的输出。但是,输出可以具有一种称为幻觉的新类型错误。在医学成像中,这些幻觉对于放射科医生来说可能并不明显,但可能会导致诊断错误。通常,幻觉是指由机器学习模型引起的对象结构的估计错误,但是没有广泛接受的方法来评估幻觉幅度。在这项工作中,我们提出了一个新的图像质量指标,称为幻觉指数。我们的方法是计算从重建图像的分布到零幻觉参考分布的距离。为了评估我们的方法,我们对电子显微镜图像,模拟噪声测量和应用基于扩散的重现进行了数值实验。我们重复采样了测量和生成重建,以计算样品平均值和协方差。对于零幻觉参考,我们使用了应用于地面真理的正向扩散过程。我们的结果表明,较高的测量SNR导致相同的明显图像质量的幻觉指数降低。我们还评估了早期停止在反向扩散过程中的影响,并发现更适度的降解强度可以减少幻觉。我们认为,该指标对于评估生成图像重建或作为警告标签可能很有用,可以将医学图像中幻觉的程度告知放射科医生。
摘要 - 非常重要的是,文本提示调整在调整对比的语言图像预训练(剪辑)模型中表现出了启示性能,以对自然图像质量评估。但是,这种单模式提示学习方法仅调节剪辑模型的语言分支。这还不足以使剪辑模型适应AI生成的图像质量评估(AGIQA),因为AGIS在视觉上与自然图像有所不同。此外,没有研究与AGIS相关的AGIS和用户输入文本提示之间的一致性,该提示与AGIS的感知质量相关,并未研究以指导AgiQA。在这封信中,我们提出了视觉语言一致性指导的多模式的迅速学习,以学习为clip-agiqa。具体来说,我们分别在剪辑模型的语言和视觉分支中介绍了可学习的文本和视觉提示。此外,我们设计了一个文本对象对齐质量预测任务,该任务的学习视觉一致性知识用于指导上述多模式提示的优化。对两个公共AGIQA数据集的实验结果表明,所提出的方法超过了最先进的质量评估模型。源代码可在https://github.com/junfu1995/clip-agiqa上找到。
* 在临床实践中,使用 Precise Image 可能会根据临床任务、患者体型和解剖位置减少 CT 患者的剂量。应咨询放射科医生和物理学家,以确定获得特定临床任务诊断图像质量的适当剂量。使用 Precise Image 的“更平滑”设置,使用 1.0 毫米切片的参考身体协议执行剂量减少评估,并在 MITA CT IQ Phantom(CCT189,Phantom 实验室)上进行测试,评估 10 毫米针头并与滤波投影进行比较。使用通道化 Hoteling 观察工具可以看到四个针头的范围,包括降低 85% 的图像噪声和在剂量减少 50% 至 80% 时从 0% 到 60% 的低对比度可检测性改进。 NPS 曲线偏移用于评估图像外观,在中心 50 毫米 x 50 毫米感兴趣区域内的 20 厘米水模上进行测量,平均偏移为 6% 或更低。