临床任务、患者体型和解剖位置。应咨询放射科医生和物理学家,以确定获得特定临床任务诊断图像质量的适当剂量。使用参考身体协议在“更平滑”设置下使用 1.0 毫米切片进行剂量减少评估,并在 MITA CT IQ Phantom(CCT189,Phantom 实验室)上进行测试,评估 10 毫米针脚并与滤波投影进行比较。使用通道化酒店观察工具可以看到 4 个针脚的范围,包括降低 85% 的图像噪声和在剂量减少 50% 至 80% 时从 0% 到 60% 的低对比度可检测性得到改善。NPS 曲线偏移用于评估图像外观,在中心 50mm x 50 mm 感兴趣区域的 20 cm 水模体上测量,平均偏移量为 6% 或更低。文件中的数据。2.Žabic S、Wang E、Morton T、Brown KM。带有能量积分探测器的 CT 系统的低剂量模拟工具。
本文研究了不同质量图像诱发的脑电信号所构成的脑网络的代数拓扑特征,并在此基础上提出了一种神经生理学的图像质量评价方法。该方法通过脑电采集与常规图像评价流程相结合获取质量感知相关的神经信息,通过拓扑数据分析获得不同失真程度图像下的有生理意义的脑部响应。验证实验结果表明,清晰图像与模糊图像诱发的脑电数据代数拓扑特征在多个频带中存在显著差异,尤其是在β频带。此外,JPEG压缩引起的脑网络相变差异更为显著,表明人类对除高斯模糊以外的JPEG压缩更敏感。总的来说,本文研究了扭曲图像诱发的脑电信号的代数拓扑特征,有助于图像质量的神经生理学评估研究。
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
复合材料是材料科学和工程中最重要的材料,包含两种或两种以上的材料。在材料工程中,扫描电子显微镜 (SEM) 技术是一种测量材料粒度的方法。一种替代 SEM 的新程序被称为人工智能 (AI)。人工智能 (AI) 是一门跨学科科学和计算机科学的分支,涉及解决需要人类智能和能力的问题。计算机视觉是人工智能的一个子领域,它使用一些算法通过使用计算机(称为图像处理)来检测图像的细节。检测粒子并测量 SEM 扫描的材料尺寸是一项重要任务,有助于描述其特征,传统上,尺寸是通过在 SEM 图像中添加网格或在任意粒子中绘制对角线来手动计算的。本文提出了一种基于人工智能 (AI) 的新模型,使用计算机视觉来分析所有粒子的尺寸。该模型用于检测复合材料(如石墨烯薄片)中添加剂的粒度,并根据扫描电子显微镜 (SEM) 上固定的参考尺寸测量它们的尺寸。该模型基于开源计算机视觉(OpenCV)库,利用多层 Canny 边缘检测、Sobel 滤波器、亮度和对比度算法,使用 Python 3。结果以非常低的处理时间 = 0.2 毫秒实现了非常满意的指示。
摘要 - 感谢任务驱动的图像质量增强(IQE)模型等最新成就,例如ESTR [1],图像增强模型和视觉识别模型可以相互增强彼此的定量,同时产生我们人类视觉系统可感知的高质量处理的图像。但是,现有的任务驱动的IQE模型倾向于忽略一个基本的事实 - 不同级别的视力任务具有不同的图像特征要求,有时甚至相互矛盾。为了解决这个问题,本文提出了针对医疗图像的任务驱动IQE的广义梯度促进(GradProm)培训策略。具体来说,我们将任务驱动的IQE系统分为两个子模型i。e。,一种用于图像增强的主流模型,也是视觉识别的辅助模型。在训练期间,GradProm仅使用视觉识别模型和图像增强模型的梯度更新图像增强模型的参数,但是只有当这两个子模型的梯度以相同的方向对齐时,这是通过其余弦相似性来衡量的。如果这两个子模型的梯度不在同一方向上,则GradProm仅使用图像增强模型的梯度来更新其参数。从理论上讲,我们已经证明了图像增强模型的优化方向不会被GradProm的实现下的辅助视觉识别模型偏差。从经验上讲,对四个公开但具有挑战性的医学图像数据集的广泛实验结果证明了Gradprom的表现优于现有最新方法。
摘要 目的 比较应用和关闭 (NON-DL) 的 AIR Recon Deep Learning™ (ARDL) 算法的肝脏 MRI 与传统高分辨率采集 (NAÏVE) 序列在定量和定性图像分析和扫描时间方面的差异。材料与方法这项前瞻性研究包括 2021 年 9 月至 11 月期间的 50 名连续志愿者(31 名女性,平均年龄 55.5 ± 20 岁)。进行 1.5 T MRI 检查并包括三组图像:使用 ARDL 和 NAÏVE 协议获取的轴向单次激发快速自旋回波 (SSFSE) T2 图像、弥散加权图像 (DWI) 和表观弥散系数 (ADC) 图;还评估了 NON-DL 图像。两名放射科医生一致在肝实质中绘制固定的感兴趣区域以计算信噪比 (SNR) 和对比噪声比 (CNR)。另外两名放射科医生使用五点李克特量表独立评估主观图像质量。记录采集时间。结果 SSFSE T2 客观分析显示 ARDL vs NAÏVE 和 ARDL vs NON-DL 的 SNR 和 CNR 较高(所有 P < 0.013)。对于 DWI,ARDL vs NAÏVE 和 ARDL vs NON-DL 的 SNR 没有差异(所有 P > 0.2517)。ARDL vs NON-DL 的 CNR 较高(P = 0.0170),而 ARDL 和 NAÏVE 之间没有差异(P = 1)。在 ADC 图的 SNR 和 CNR 方面,三种比较均无差异(所有 P > 0.32)。所有序列的定性分析显示 ARDL 的整体图像质量更好,截断伪影更少,清晰度和对比度更高(所有 P < 0.0070),且具有出色的评分者间一致性(k ≥ 0.8143)。 ARDL 序列的采集时间比 NAÏVE 短 (SSFSE T2 = 19.08 ± 2.5 s vs. 24.1 ± 2 s 和 DWI = 207.3 ± 54 s vs. 513.6 ± 98.6 s,所有 P < 0.0001)。结论 ARDL 应用于上腹部与 NAÏVE 协议相比,整体图像质量更好,扫描时间更短。
2 泰国曼谷拉卡邦先皇理工学院信息技术学院,1 Chalong Krung 1 Alley,Ladkrabang,Bangkok 10520,泰国电子邮件:a treesukon.tr@kmitl.ac.th,b,* suvit@it.kmitl.ac.th(通讯作者)摘要。深度学习模型构建中监督学习的关键要求之一是用于训练和验证的数据集。为了收集数据集,从不同资源获取各种质量的图像是不可避免的,这被认为会影响监督模型的性能。本研究旨在证明涉及从两个不同资源获得的高和标准数据集的图像质量对模型性能的影响。对具有革兰氏阳性菌和革兰氏阴性菌数据集的各种细胞特征进行了试验。这些不同的数据集被匹配并贡献了 5 个案例;案例 1:使用高质量图像进行训练和测试,案例 2:使用高质量图像进行训练并使用标准质量图像进行测试,案例 3:使用标准质量图像进行训练和测试,案例 4:使用标准质量图像进行训练并使用高质量图像进行测试,以及案例 5:结合这两种图像质量进行训练和测试。实施了预训练的 CNN 模型来证明使用和不使用分层 K 折交叉验证的目的。重新训练模型的结果表明,高性能模型需要从与测试集相同资源中获得的高质量数据集,在具有挑战性的未知数据集上进行测试时,这些数据集可产生超过 90% 的所有性能评估指标。这项研究为构建可用于自动化微生物诊断的高性能模型提供了宝贵的见解,对公共卫生和临床实践产生了影响。
摘要 - 非常重要的是,文本提示调整在调整对比的语言图像预训练(剪辑)模型中表现出了启示性能,以对自然图像质量评估。但是,这种单模式提示学习方法仅调节剪辑模型的语言分支。这还不足以使剪辑模型适应AI生成的图像质量评估(AGIQA),因为AGIS在视觉上与自然图像有所不同。此外,没有研究与AGIS相关的AGIS和用户输入文本提示之间的一致性,该提示与AGIS的感知质量相关,并未研究以指导AgiQA。在这封信中,我们提出了视觉语言一致性指导的多模式的迅速学习,以学习为clip-agiqa。具体来说,我们分别在剪辑模型的语言和视觉分支中介绍了可学习的文本和视觉提示。此外,我们设计了一个文本对象对齐质量预测任务,该任务的学习视觉一致性知识用于指导上述多模式提示的优化。对两个公共AGIQA数据集的实验结果表明,所提出的方法超过了最先进的质量评估模型。源代码可在https://github.com/junfu1995/clip-agiqa上找到。
提交日期:2024 年 5 月 4 日 修订日期:2024 年 6 月 11 日 接受日期:2024 年 7 月 3 日 发布日期:2024 年 7 月 3 日 摘要 在 RSI Siti Rahmah Padang 的放射科设施中,对创伤病例 CT 扫描脑部检查中切片厚度变化对图像质量的差异进行了分析研究。本研究旨在确定创伤病例 CT 扫描脑部检查中 3 毫米、5 毫米和 7 毫米不同切片厚度的图像质量差异,以及在创伤病例的 CT 扫描脑部检查中,哪种切片厚度能够产生最佳图像质量以确立诊断。本研究于 2022 年 1 月至 2022 年 6 月进行,采用定量研究和实验方法,采用目的抽样技术,并使用加权平均分数公式和 SPSS Friedman 方法处理分发给受访者的问卷数据。根据加权平均得分公式,切片厚度变化3 mm、5 mm和7 mm的最高均值为3 mm的切片厚度,均值为3.64,对比度分辨率均值为3.67,噪声为3.49,创伤病例CT脑部检查骨窗结果平均为t3.74。根据Friedman方法的SPSS结果发现,创伤病例CT脑部检查中3 mm、5 mm和7 mm切片厚度变化的结果存在显著差异(p值<0.05),这表明Hₒ被拒绝而Hₐ被接受。CT脑部检查中显示创伤的良好切片厚度变化是骨窗中3 mm的切片厚度,因为如果有非常小的骨折,可以更清楚地看到。关键词:脑 CT 扫描,创伤,切片厚度,对比度分辨率背景