对于医学图像分割,想象一下如果一个模型仅使用源域中的 MRI 图像进行训练,那么它在目标域中直接分割 CT 图像的性能如何?这种设置,即具有临床潜力的通用跨模态分割,比其他相关设置(例如域自适应)更具挑战性。为了实现这一目标,我们在本文中提出了一种新颖的双重规范化模型,该模型在通用分割过程中利用增强的源相似和源不相似图像。具体而言,给定一个源域,旨在模拟看不见的目标域中可能的外观变化,我们首先利用非线性变换来增强源相似和源不相似图像。然后,为了充分利用这两种类型的增强,我们提出的基于双重规范化的模型采用共享主干但独立的批量规范化层进行单独规范化。随后,我们提出了一种基于风格的选择方案,在测试阶段自动选择合适的路径。在三个公开数据集(即 BraTS、跨模态心脏和腹部多器官数据集)上进行的大量实验表明,我们的方法优于其他最先进的领域泛化方法。代码可在 https://github.com/zzzqzhou/Dual-Normalization 获得。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
多发性硬化症(MS)是中枢神经系统(CNS)的自身免疫性疾病,没有明确的触发因素。然而,流行病学研究表明,遗传性易感性个体中的Epstein-Barr病毒(EBV)感染(EBV)和低维生素D(VIT D)水平等环境因素是重要的危险因素。一个主要建议是,EBV通过分子模拟物等机制触发MS,在该机制中激活的自动反应性B和T淋巴细胞错误地靶向自我抗原。与其他危险因素,低血清VIT D水平,VIT D受体的遗传多态性以及北半球国家的MS发病率更高,这表明VIT D在MS病理学中也起着作用。维生素D,以其神经保护作用和免疫调节作用而闻名,有助于维持促炎和抗炎性免疫细胞之间的平衡。研究和正在进行的临床试验表明,次动物症D与MS的风险增加有关,而VIT D补充剂可以帮助降低疾病的严重程度。此外,次动物症D也与免疫系统失调和增加MS的风险增加有关。本综述探讨了这三个良好认可的危险因素如何在MS的发病机理中相互作用 - EBV感染,次动物症D和失调的免疫系统 - 相互作用。了解这些相互作用及其后果可以为治疗这种毁灭性疾病的新型治疗方法提供新的见解。
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
微分同胚图像配准能够提供平滑的变换和拓扑保存,在许多医学图像分析任务中是必需的。传统方法对可接受的变换空间施加某些建模约束,并使用优化来寻找两幅图像之间的最佳变换。指定正确的可接受的变换空间具有挑战性:如果空间过于严格,配准质量可能会很差,而如果空间过于笼统,则优化可能难以解决。最近基于学习的方法利用深度神经网络直接学习变换,实现了快速推理,但由于难以捕捉微小的局部变形和泛化能力,在准确性方面面临挑战。在这里,我们提出了一种新的基于优化的方法,称为 DNVF(带神经速度场的微分同胚图像配准),该方法利用深度神经网络来建模可接受的变换空间。具有正弦激活函数的多层感知器 (MLP) 用于表示连续速度场,并为空间中的每个点分配一个速度矢量,从而提供对复杂变形进行建模的灵活性以及优化的便利性。此外,我们提出了一种级联图像配准框架 (Cas-DNVF),结合了优化和基于学习的方法的优点,其中训练完全卷积神经网络 (FCN) 来预测初始变形,然后使用 DNVF 进行进一步细化。在两个大型 3D MR 脑部扫描数据集上进行的实验表明,我们提出的方法明显优于最先进的配准方法。
最近,由于它能够从大量未标记的数据中学习,因此蒙版的图像建模(MIM)引起了很大的关注,并且已被证明对涉及自然IM的各种视觉任务有效。同时,由于数量的未标记图像以及质量标签的费用和困难,预计自我监督的学习3D医学图像的潜力预计将是巨大的。但是,MIM对医学图像的适用性仍然不确定。在本文中,我们证明了掩盖的进度建模方法除自然图像外,还可以推进3D医学图像分析。我们研究掩盖图像建模策略如何从3D医疗图像段的角度利用绩效,作为一项代表性的下游任务:i)与天真的对比度学习相比,掩盖的图像建模ap-par-ap-par-ap-par casge casge casge casgence convelence contergencience convergence contressed of被监督的火车的融合甚至更高(1.40×)得分(1.40×),并最终会产生较高的股票; ii)预测具有较高遮盖比和相对较小的斑块大小的原始体素值是用于医学图像的非琐碎的自我监督借口任务; iii)重建重建的轻量级解码器或投影头对3D医疗图像的掩盖图像模型非常可靠,该图像可以加快训练并降低成本; iv)最后,我们还研究了应用不同图像分辨率和标记的数据比率的不同实际情况下的MIM方法的有效性。匿名代码可在https://github.com/zekaichen/mim-med3d上找到。
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。