深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
微分同胚图像配准能够提供平滑的变换和拓扑保存,在许多医学图像分析任务中是必需的。传统方法对可接受的变换空间施加某些建模约束,并使用优化来寻找两幅图像之间的最佳变换。指定正确的可接受的变换空间具有挑战性:如果空间过于严格,配准质量可能会很差,而如果空间过于笼统,则优化可能难以解决。最近基于学习的方法利用深度神经网络直接学习变换,实现了快速推理,但由于难以捕捉微小的局部变形和泛化能力,在准确性方面面临挑战。在这里,我们提出了一种新的基于优化的方法,称为 DNVF(带神经速度场的微分同胚图像配准),该方法利用深度神经网络来建模可接受的变换空间。具有正弦激活函数的多层感知器 (MLP) 用于表示连续速度场,并为空间中的每个点分配一个速度矢量,从而提供对复杂变形进行建模的灵活性以及优化的便利性。此外,我们提出了一种级联图像配准框架 (Cas-DNVF),结合了优化和基于学习的方法的优点,其中训练完全卷积神经网络 (FCN) 来预测初始变形,然后使用 DNVF 进行进一步细化。在两个大型 3D MR 脑部扫描数据集上进行的实验表明,我们提出的方法明显优于最先进的配准方法。
分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
。CC-BY 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2025年3月10日。 https://doi.org/10.1101/2025.03.06.25323546 doi:medrxiv preprint
Mandeep Kaur 1,Rahul Thour博士2 1研究学者部计算机科学与应用,Desh Bhagat University,Mandi Gobindgarh 2助理教授计算机科学和应用,德什·巴加特大学,曼迪·戈宾德加(Mandi Gobindgarh)摘要:脑部疾病是严重的疾病,不得不忽略,因为大脑失败会对整体健康构成重大威胁。早期检测和干预对于管理各种与大脑相关的疾病至关重要。检测脑肿瘤和其他神经系统问题的主要诊断方法之一是MRI成像。MRI是一种首选技术,由于其效率,实时成像功能和缺乏辐射。然而,诸如Speckle噪声,高斯噪声和其他工件之类的挑战继续损害MRI图像的质量。因此,提高图像质量对于准确的脑部疾病诊断至关重要。为了克服这些挑战,采用了各种成像技术来进行预处理,降低降噪和图像增强。从嘈杂的MRI数据中获得高质量图像的关键方法是图像恢复和增强。鉴于MRI的高频特性,脑部扫描中通常存在噪声。预处理通过应用过滤器消除噪声来改善图像质量中起着至关重要的作用。诸如Mean,Mentian,Wiener和其他过滤器之类的技术通常用于解决诸如Speckle,Salt和Pepper和Gaussian噪声之类的问题。关键字:大脑MRI成像,斑点噪声,高斯噪声,预处理,图像增强。这项研究提供了各种MRI图像预处理和增强技术的全面概述,概述了它们的目标和有效性。
这项研究为从气候监测到广泛的地区到环境项目和农业任务提供了更准确的细分机会。例如,该解决方案促进了对森林区域的有效分析,其特征和变化,即使在云云比例很高的北部地区,同时考虑了气候条件对图像的影响。
通过采用生成AI模型,只需一次一次接触即可获得使QPI对生物医学应用吸引的必要图像质量。该团队于2月下旬举行的AI促进协会(AAAI 2025)于今年在费城组织的AI协会的第39届AI年会。相应的会议论文可在Arxiv预印式服务器上找到。
Cristiana Baloescu,M.D.,M.P.H.,来自康涅狄格州纽黑文的耶鲁大学医学院,同事们研究了AI在多中心诊断研究中通过THCPS指导THCP的诊断质量LUS图像的能力。年龄在21岁或以上的参与者从四个临床站点招募了两次超声检查:一名使用肺指导AI的THCP操作员和一个没有AI的训练有素的LUS专家。参与之前,THCP进行了标准化的AI培训以获取LUS。
使用迷你领导的设备和SIBS基板上的印刷图像的原始和剪切的SIBS膜之间垂直失真和变形差异的可视化。a)未拉伸设备的照片,d)印刷图像; b)设备和e)原始SIBS基板上的印刷图像伸展50%。c)设备和f)在剪切的SIBS基板上打印的图像伸展50%。(a – c)中的白色比例尺和(d – f)中的黑色比例尺每个代表1 cm。信用:高级材料(2024)。doi:
