高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
方法:招募了总共333例肺结核(训练队列中的233例,在验证队列中为100例)。从MRI图像(CE T1W和T2W)中提取了总共2,824个放射线特征。逻辑回归(LR),幼稚的贝叶斯(NB),支持向量机(SVM),随机森林(RF)和极端梯度提升(XGBOOST)分类器用于构建预测模型,并在应用最佳预测模型后为每个患者获得了放射线学分数(RAD分数)。临床因素和RAD分数共同基于多元逻辑回归分析构建了一个nom图模型,并使用接收器操作特征曲线(AUC)下的区域评估了五个预测模型的诊断性能。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
。CC-BY 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2025年3月10日。 https://doi.org/10.1101/2025.03.06.25323546 doi:medrxiv preprint
Mandeep Kaur 1,Rahul Thour博士2 1研究学者部计算机科学与应用,Desh Bhagat University,Mandi Gobindgarh 2助理教授计算机科学和应用,德什·巴加特大学,曼迪·戈宾德加(Mandi Gobindgarh)摘要:脑部疾病是严重的疾病,不得不忽略,因为大脑失败会对整体健康构成重大威胁。早期检测和干预对于管理各种与大脑相关的疾病至关重要。检测脑肿瘤和其他神经系统问题的主要诊断方法之一是MRI成像。MRI是一种首选技术,由于其效率,实时成像功能和缺乏辐射。然而,诸如Speckle噪声,高斯噪声和其他工件之类的挑战继续损害MRI图像的质量。因此,提高图像质量对于准确的脑部疾病诊断至关重要。为了克服这些挑战,采用了各种成像技术来进行预处理,降低降噪和图像增强。从嘈杂的MRI数据中获得高质量图像的关键方法是图像恢复和增强。鉴于MRI的高频特性,脑部扫描中通常存在噪声。预处理通过应用过滤器消除噪声来改善图像质量中起着至关重要的作用。诸如Mean,Mentian,Wiener和其他过滤器之类的技术通常用于解决诸如Speckle,Salt和Pepper和Gaussian噪声之类的问题。关键字:大脑MRI成像,斑点噪声,高斯噪声,预处理,图像增强。这项研究提供了各种MRI图像预处理和增强技术的全面概述,概述了它们的目标和有效性。
这项研究为从气候监测到广泛的地区到环境项目和农业任务提供了更准确的细分机会。例如,该解决方案促进了对森林区域的有效分析,其特征和变化,即使在云云比例很高的北部地区,同时考虑了气候条件对图像的影响。
通过采用生成AI模型,只需一次一次接触即可获得使QPI对生物医学应用吸引的必要图像质量。该团队于2月下旬举行的AI促进协会(AAAI 2025)于今年在费城组织的AI协会的第39届AI年会。相应的会议论文可在Arxiv预印式服务器上找到。
Cristiana Baloescu,M.D.,M.P.H.,来自康涅狄格州纽黑文的耶鲁大学医学院,同事们研究了AI在多中心诊断研究中通过THCPS指导THCP的诊断质量LUS图像的能力。年龄在21岁或以上的参与者从四个临床站点招募了两次超声检查:一名使用肺指导AI的THCP操作员和一个没有AI的训练有素的LUS专家。参与之前,THCP进行了标准化的AI培训以获取LUS。
使用迷你领导的设备和SIBS基板上的印刷图像的原始和剪切的SIBS膜之间垂直失真和变形差异的可视化。a)未拉伸设备的照片,d)印刷图像; b)设备和e)原始SIBS基板上的印刷图像伸展50%。c)设备和f)在剪切的SIBS基板上打印的图像伸展50%。(a – c)中的白色比例尺和(d – f)中的黑色比例尺每个代表1 cm。信用:高级材料(2024)。doi: