注释歧义由于固有的数据不确定性,例如医学扫描中的界限模糊以及不同的观察者专业知识和偏好已成为训练基于深度学习的医学图像模型的主要观点。为了解决这个问题,普遍的做法是从不同专家那里收集多个注释,导致多评价医学图像分割的设置。现有的作品旨在将不同的注释合并到“地面真实”中,而在众多医疗环境中通常无法实现,或者产生不同的结果,或产生与个人专家评估者相对应的个性化结果。在这里,我们提出了一个更雄心勃勃的多评价医学图像细分的目标,即遵守多元化和个性化结果。指定,我们提出了一个名为d-persona的两个阶段框架(第一个d iversification,然后是角色lization)。在第I阶段,我们利用多个给定注释来训练一个可能性的U-NET模型,并具有约束损失,以证明预测多样性。以这种方式,在第I阶段建造了一个共同的空间,其中不同的潜在代码表示多样化的专家意见。然后,在第二阶段,我们设计了多个基于注意力的投影头,以适应来自共享潜在空间的相应专家提示,然后执行个性化的医疗图像细分。我们评估了内部鼻咽癌数据集和公共肺结核数据集(即LIDC-IDRI)的拟议模型。我们的代码将在https://github.com/ycwu1997/d-persona上发布。的实验实验表明,我们的D-Persona可以同时获得多元化和个性化的结果,从而实现了多评位者医疗图像细分的新SOTA性能。
Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
尽管用于语义图像编辑的深度神经模型最近取得了进展,但目前的方法仍然依赖于明确的人工输入。先前的工作假设有手动整理的数据集可用于监督学习,而对于无监督方法,需要人工检查发现的组件以识别那些修改有价值语义特征的组件。在这里,我们提出了一种新颖的替代方法:利用大脑反应作为学习语义特征表示的监督信号。在一项神经生理学实验中,向参与者 (N=30) 展示人工生成的面孔并指示他们寻找特定的语义特征,例如“老”或“微笑”,同时通过脑电图 (EEG) 记录他们的大脑反应。使用从这些反应推断出的监督信号,学习生成对抗网络 (GAN) 潜在空间内的语义特征,然后将其用于编辑新图像的语义特征。我们表明,隐性大脑监督实现的语义图像编辑性能与显性手动标记相当。这项工作证明了利用通过脑机接口记录的隐性人类反应进行语义图像编辑和解释的可行性。
抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
文本引导的图像编辑可以在支持创意应用程序方面具有变革性的影响。关键挑战是生成忠于输入文本提示的编辑,同时与输入图像一致。我们提出了Imagen Edor,这是一种构建的级联扩散模型,通过对文本引导的图像插入的微调[36]构建。Imagen ed- Itor的编辑忠实于文本提示,这是通过使用对象探测器在培训期间提出涂料面罩来提出的。此外,成像编辑器在输入图像中通过对原始高分辨率图像进行调节管道来详细信息。为了证明定性和定量评估,我们介绍了EditBench,这是用于文本指导图像插入的系统基准。EditBench评估在Natu-ral和生成的图像上探索对象,属性和场景的图像。Through extensive human evaluation on EditBench, we find that object-masking during training leads to across- the-board improvements in text-image alignment – such that Imagen Editor is preferred over DALL-E 2 [ 31 ] and Stable Diffusion [ 33 ] – and, as a cohort, these models are better at object-rendering than text-rendering, and handle mate- rial/color/size attributes better than count/shape attributes.
高质量的高分辨率(HR)磁共振(MR)图像提供了更详细的信息,可用于可靠的诊断和定量图像分析。深度综合神经网络(CNN)显示出低分辨率(LR)MR图像的MR图像超分辨率(SR)的有希望的Abil。LR MR图像通常具有一些vi-Sual特征:重复模式,相对简单的结构和信息较少的背景。大多数以前的基于CNN的SR方法同样处理空间像素(包括背景)。他们也无法感知输入的整个空间,这对于高质量的MR IMPIMSR至关重要。为了解决这些问题,我们提出了挤压和激发推理注意网络(SERAN),以获得MR Image SR。我们建议从输入的全球空间信息中挤出注意力,并获得全球描述符。这样的全球描述符增强了网络专注于MR图像中更具信息区域和结构的能力。我们在这些全球描述符之间进一步建立了关系,并提出了引起关注的原始关系。全球描述符将以学习的关注进一步确定。为了充分利用汇总信息,我们通过学习的自适应注意向量自适应地重新校准了特征响应。这些注意向量选择一个全局描述符的子集,以补充每个空间位置以进行准确的细节和纹理重新分解。我们通过残留的缩放提出挤压和激发注意力,这不仅可以稳定训练,而且还使其对其他基本网络的灵感变得非常灵活。广泛的例证显示了我们提出的Seran的有效性,该塞伦在定量和视觉上清楚地超过了基准标记的最新方法。
分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。