●本课程分别列为11-741(研究生12个单位)和11-441(本科生的9个单位)。●11-741名学生必须完成所有5份家庭作业,并在期中和期末考试中回答所有问题。●11-441名学生必须在总共5个家庭作业(通过自己的选择)和70%的考试问题(通过自己的选择)中进行4分。如果本科生选择做更多的家庭作业,我们将在最终的HW分级中使用最优秀的4分。同样,如果本科生选择做更多的考试问题,我们将使用考试评分中70%最佳回答问题的分数。●详细的作业描述如下: - HW1。实施神经网络(CNN和RNN)进行二进制分类,并在Yelp评论数据集中使用单词嵌入,并使用TensorFlow或Keras等软件。> HW2。实现Yelp评论的多类分类的软马克斯逻辑回归,并通过损失函数的梯度推导。- HW3。实施Pagerank,个性化的Pagerank和查询敏感的Pagerank方法,用于网页流行度分析并评估其在Citeeval数据集中的检索性能。> HW4。实现图形神经网络(GNN)模型,用于SIMI监督节点分类,链接预测和图形分类。> HW5。知识图推理;带有transe的节点。
这项研究研究了使用市售活性炭(AC)同时回收贵金离子。在通过微波辐射增强的封闭批处理反应器中进行吸附,从而产生高压和高温条件。检查了溶液的交流质量,过程,过程,温度,pH和离子强度的影响。高温,高压和微波辐射被证明是化学激活的有效手段,导致了近100%的吸附效率。建议微波辐射显着增加活性碳表面的局部温度,从而改变吸附机理。与没有微波支持的传统批处理反应堆相比,这种增强导致了更高的回收率。结果证明了该方法有效金属回收的重要潜力。
颈动脉动脉粥样硬化患者有缺血性中风和由于栓子和脑组织的慢性灌注不足而导致缺血性中风和认知下降的风险。血运重建程序改善了脑血液动力学,这对认知功能有一定影响。一些作者认为,颈动脉动脉狭窄的存在是影响认知能力下降的独立因素。这项研究的目的是研究颈动脉粥样硬化个体的颈动脉支架动脉狭窄程度与注意力表现之间的关系。在心脏病学住院期间涉及患者(T-1)的单个中心和住院治疗后1年(T-2)进行了一项前瞻性纵向研究,用于颈动脉狭窄。使用了R. brickenkamp的注意力D2测试。研究表明,颈动脉狭窄的关键程度与接受颈动脉支架的个体的注意力表现较差有关。然而,无论颈动脉狭窄的程度如何,所有接受颈动脉支架的患者的浓缩能力在手术后一年有所提高。还发现,颈动脉动脉粥样硬化患者的血管收缩(右/左)的一侧对注意力的认知功能没有影响。
助听器配件通常是基于基于人群的处方(例如DSLV5和NAL-NL2)进行的。虽然对基线拟合有效,但这些处方并未考虑到个人的听力偏好,尤其是在可能引起个人感兴趣的嘈杂的音频环境中,从而导致听力下降和助听器满意度降低。本文提出了一个图形 - 用户界面(GUI)软件工具,称为助听器放大的个性化(PHAP),用于个性化助听器配件。此GUI结合了一种先前开发的多波段贝叶斯机器学习方法,可通过配对的音频比较达到个性化设置。通过独立地对每个频段进行建模,此方法可大大减少训练时间,从而使该工具实现个性化。通过以时间效率的方式简化个性化过程,开发的GUI提供了一种将用户偏好纳入配件的有效方法,并为更广泛地采用听力学诊所的个性化助听器配件铺平了道路。
向前发展:垂直农业如何融合技术能力和古老的农艺知识来改变世界 - (Videopillola)Castrogiovanni Antonino国家形象和购买的意愿:绿色产品形象在消费者感知中的中介作用
摘要 - 在本文中,我们为在协作环境中为智能负载平衡和排队代理提供了图形卷积深的加固学习框架。我们旨在平衡不同路径上的流量负载,然后控制网络节点上属于不同流量类别的数据包。我们的目标是双重的:首先是在吞吐量和端到端延迟方面提高一般网络性能,其次,以确保满足一组分类网络流的严格服务水平协议。我们的建议使用注意机制从当地观察和邻里政策中提取相关特征,以限制机构间通信的开销。我们在台球测试台中评估了我们的算法,并表明它们在吞吐量和端到端延迟方面都优于加载平衡和智能排队的经典方法。索引术语 - 智能排队,负载平衡,深入执行学习,多代理系统。
本文提出了一种使用图神经网络(GNN)的新方法来解决电网中的交流功率流问题。AC OPF对于在满足电网的操作限制的同时,对最小生成成本至关重要。传统求解器与可扩展性斗争,尤其是在具有续签能源的大型系统中。我们的方法将功率网格建模为图形,其中总线是节点,传输线是边缘。我们探索包括GCN,GAT,SageConv和GraphConv在内的不同GNN架构,以有效地预测AC功率流解决方案。我们在IEEE测试系统上进行的实验表明,GNN可以准确地预测功率流解决方案并扩展到较大的系统,从而在计算时间方面优于传统求解器。这项工作突出了GNNs对实时电网管理的潜力,并计划将模型应用于更大的网格系统。
在金融交易中进行检测至关重要,特别是对于确定诸如阴谋欺骗之类的复杂行为。传统机器学习方法主要集中在孤立的节点特征上,通常忽略了互互互操作节点的更广泛背景。基于图形的技术,尤其是图形神经网络(GNN),通过有效利用关系信息来推进该领域。但是,在现实世界中的欺骗检测数据集中,交易行为表现出动态,不规则的模式。措施欺骗检测方法虽然在某些方面有效,但仍在努力捕获动态和多样化的,不断发展的节点之间的关系的复杂性。为了应对这些挑战,我们提出了一个名为“生成动态图”模型(GDGM)的新颖框架,该框架对动态交易行为进行建模以及节点之间的关系,以学习阴谋欺骗检测的表示表示。具体来说,我们的方法结合了生成动态的潜在空间,以捕获时间模式和不断发展的市场条件。原始交易数据首先将其转换为时标的序列。然后,我们使用神经普通微分方程和门控反式单元对交易行为进行建模,以生成结合欺骗模式的时间动态的表示形式。此外,还采用了伪标记的结构和异质聚合技术来收集相关信息并提高阴谋欺骗行为的检测性能。对欺骗检测数据集进行的实验表明,我们的方法在检测准确性方面构成了最先进的模型。此外,我们的欺骗检测系统已成功部署在最大的全球交易市场之一中,进一步验证了所提出方法的实际适用性和性能。
动机:抑制剂 - 激酶结合亲和力的准确预测对于药物发现和医疗应用至关重要,尤其是在治疗诸如癌症之类的疾病中。现有的预测抑制剂 - 激酶亲和力的方法仍然面临挑战,包括数据表达不足,功能提取有限和性能低。尽管通过人工智能(AI)方法(尤其是深度学习技术)取得了进展,但许多当前的方法未能捕获激酶与抑制剂之间的复杂相互作用。因此,有必要开发更先进的方法来解决抑制剂 - 激酶结合预测中的现有问题。结果:这项研究提出了Kinhibhib,这是抑制剂 - 激酶结合亲和力预测指标的新型框架。kinhibit会整合自我监督的预训练的预训练的分子编码器和蛋白质语言模型(ESM-S),以有效提取特征。kinhibit还采用特征融合方法来优化抑制剂和激酶特征的融合。实验结果证明了这种方法的优越性,在三种MAPK信号途径激酶的抑制剂预测任务中,精度达到了92.6%的精度:RAF蛋白激酶(RAF),有丝分裂原激活的蛋白激活蛋白激酶激酶激酶(MEK)和细胞外信号调节激酶(ERK)。此外,该框架在包含200多个激酶的数据集上达到了令人印象深刻的精度。这项研究为药物筛查和生物科学提供了有希望的有效的工具。