Loading...
机构名称:
¥ 2.0

量子计算最常见的形式化是电路模型,这是一种表示二维希尔伯特空间中酉矩阵的图解语言,有关简介请参阅 [20]。量子过程的验证需要量子电路的健全完备的方程理论,即通过生成器和关系对酉矩阵的完整表示。这是一个众所周知的难题。通过放宽酉性条件并允许所有线性映射,人们发现了至少三种不同的完整方程理论。ZX 演算在 [4] 中被引入,并被设计为范畴量子力学程序的一部分。它依赖于两个互补可观测量之间的相互作用。ZX 演算已被证明是一种推理量子过程的良好语言 [7, 11]。然而,寻找一套使其完整的规则已经开放很长时间,部分解决方案 [15] 涉及二级图形语言:ZW 演算 [12,5]。该演算建立在两个三部分纠缠类(GHZ 和 W 状态)之上,揭示了新的结构。后来又引入了另一种完整的图形语言,即 ZH 演算 [1],其灵感来自超图状态。与量子电路相比,这三种语言有一个重要的优势。流程和矩阵不仅仅用图表示,还要用图表示(因此称为图形语言)。同构图表示相同的量子演化。这一特性嵌入在“只有拓扑重要”范式中。这是一个微妙的特征:通常的图形语言(如量子电路)从给定的一组原语(通常是量子门)开始,输入和输出的概念对于这些原语来说很重要。当仅拓扑重要时,人们可以很容易地将输入切换到输出,反之亦然。

量子图形语言的秘诀

量子图形语言的秘诀PDF文件第1页

量子图形语言的秘诀PDF文件第2页

量子图形语言的秘诀PDF文件第3页

量子图形语言的秘诀PDF文件第4页

量子图形语言的秘诀PDF文件第5页

相关文件推荐

1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2024 年
¥4.0
2021 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2020 年
¥3.0
2022 年
¥1.0
2002 年
¥1.0
2024 年
¥1.0
2024 年
¥3.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2020 年
¥4.0
2022 年
¥3.0
2022 年
¥2.0
2022 年
¥10.0
2022 年
¥2.0
2022 年
¥1.0
2024 年
¥3.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0